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ABSTRACT

In this paper we present WERITAS, which is based in part on the traditional Active Shape Model (ASM) segmentation
system. WERITAS generates multiple statistical texture features, and finds the optimal weighted average of those texture
features by maximizing the correlation between the Euclidean distance to the ground truth and the Mahalanobis distance
to the training data. The weighted average is used a multi-resolution segmentation system to more accurately detect the
object border. A rigorous evaluation was performed on over 200 clinical images comprising of prostate images and breast
images from 1.5 Tesla and 3 Tesla MRI machines via 6 distinct metrics. WERITAS was tested against a traditional multi-
resolution ASM in addition to an ASM system which uses a plethora of random features to determine if the selection
of features is improving the results rather than simply the use of multiple features. The results indicate that WERITAS
outperforms all other methods to a high degree of statistical significance. For 1.5T prostate MRI images, the overlap from
WERITAS is 83%, the overlap from the random features is 81%, and the overlap from the traditional ASM is only 66%.
In addition, using 3T prostate MRI images, the overlap from WERITAS is 77%, the overlap from the random features
is 54%, and the overlap from the traditional ASM is 59%, suggesting the usefulness of WERITAS. The only metrics in
which WERITAS was outperformed did not hold any degree of statistical significance. WERITAS is a robust, efficient,
and accurate segmentation system with a wide range of applications.
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1. INTRODUCTION

Segmentation is the process of defining where an object is in an image. One of the most common segmentation systems is
the Active Shape Model (ASM) segmentation scheme.1 The ASM model segments an object in a 2 step fashion: detect the
object border, and update the shape to fit the detected border. Our system focuses on improving the border detection part
of the ASM. Normally, landmarks are placed on the border by experts on a series of training images. Then, pixels in the
normal direction are sampled and a statistical appearance model is created. When searching for the border in a test image,
the Mahalanobis distance is minimized between the test image’s intensity values and the training images’ intensity values
to detect the border.

While ASM’s set the groundwork for a very efficient and accurate segmentation system, there are some inherent
limitations. The first is the requirement for a proper initialization. If the system is initialized too far from the ground
truth, the system won’t be able to converge on the correct object border. Also, the use of the Mahalanobis distance leads to
some limitations. First of all, the Mahalanobis distance assumes that the distribution of intensity values is Gaussian, which
need not necessarily be the case. ASM’s normally find the location with the minimum Mahalanobis distance, and assume
that is close to the object border. But outliers, local minima, and intensity artifacts often prevent accurate segmentations.
Secondly, image intensities might not necessarily be the optimal texture to use, as intensities are prone to noise and artifacts,
which detracts from an accurate segmentation. In addition, with limited training data, the Mahalanobis distance will be
undefined if too many pixels are sampled.

Several improvements to traditional ASM’s have been proposed. The first is the popular Active Appearance Model
(AAM), which creates a global appearance model of the object, and combines that model with the shape information. 2
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In addition, the AAM model was improved to be more robust to occlusion and outliers (called Robust AAM), 3 and the
ASM model was also independently improved to be more robust to outliers. 4 In addition, casting the entire system in a
multi-resolution framework is a simple yet effective method for improving accuracy, 5 which we adopt in our system. If
a multi-resolution framework is not desired, methods for initialization such as that presented in [6] can be used to offer
a reasonable initialization. A major improvement to the traditional ASM is ASM with Optimal Features (ASMOF), 7

which was shown to offer significant improvements. ASMOF steers clear entirely of using the Mahalanobis distance, and
instead creates a classifier as to whether a pixel is considered inside or outside of the object. Then, whichever features best
classify pixels are used in the segmentation algorithm. The significant improvements offered by this approach show the
usefulness of using features other than just image intensities, although it is unclear whether the improvements come from
the features or from using a classifier instead of the Mahalanobis distance. A second segmentation system which builds
upon the traditional ASM scheme is Minimal Shape and Intensity Cost Path Segmentation (MISCP). 8 While this system
contains many differences to the traditional ASM, we focus on two major improvements. The first improvement is the
idea of sampling a neighborhood around each landmark point instead of just pixels along a straight line. This allows more
information to be gleaned from the training data.

A second improvement is the idea of using multiple statistical texture features, and during segmentation averaging
the Mahalanobis distance values from each feature. We previously proposed a system (MANTRA), which uses multiple
statistical texture features, and is driven by using Combined Mutual Information as compared to the Mahalanobis distance. 9

MANTRA showed the advantages of using multiple texture features over simply using intensities. However, there was no
intelligent method of feature selection, so while it did offer improvements over the traditional ASM, there is still room for
significant increases in accuracy, which we hope to accomplish with WERITAS.

When using multiple features, the problem becomes one of feature selection. While adding features does offer signifi-
cantly more textural information, some features may detract from the segmentation, and some features might not perform
any better than simply using intensities. Our approach is donned WERITAS (from Latin, for ”truth”), and stands for
Weighted Ensembled of Regional Image Textures for ASM Segmentation. We build upon the idea presented in MISCP,
in which the Mahalanobis distance of multiple features were averaged. But instead of simply taking an average of a large
set of features, we find the optimal features to average, and the optimal weights for those features by maximizing the
correlation between the Euclidean distance to the ground truth, and the Mahalanobis distance to the training data. The
spirit of the system is that with a high correlation, the pixels with a low Mahalanobis distance will consistently be closer
to the ground truth. We adopt this idea because ideally the Mahalanobis distance should be minimum at the ground truth,
and should increase as the distance to the ground truth increases, so that the ASM can hone in closer on the true object
border at each iteration. Our base set of features include 84 1st and 2nd order statistical texture features 10, 11 such as
mean, median, standard deviation, Haralick entropy, and Sobel gradient, which have been previously shown to be useful
in both computer aided diagnosis systems and registration tasks. 10–13 A second improvement to the traditional use of the
Mahalanobis distance deals with the limitation that arises with limited training data. Currently, the Mahalanobis distance
is undefined if the number of pixels sampled near a landmark point is greater than the number of training images. This
happens because the covariance matrix becomes sparse, which makes the inverse impossible to compute. We overcome
this limitation by taking the Moore-Penrose pseudo-inverse 14 of the covariance matrix instead of the traditional inverse.
The Moore-Penrose pseudo-inverse is a generalized inverse, holding many of the same properties of the traditional inverse,
and can be calculated for any matrix, including sparse matrices with determinants of zero. This means that the sampling
area will not be limited by the training data. The following outlines the specific novel contributions of the system.

1. The optimal linear combination of features’ Mahalanobis distances to increase correlation between Euclidean dis-
tance to the ground truth and Mahalanobis distance to the training data.

2. The use of the optimal linear combination of features’ Mahalanobis distances in a ASM-based segmentation system.

3. The use of the Moore-Penrose pseudo-inverse in the Mahalanobis distance calculation so that the number of pixels
sampled is not limited by the number of training images.

We evaluated our system with over 200 clinical images from prostate and breast data, of multiple modalities. Expert
radiologists were recruited to perform manual segmentations, and a 10-fold cross validation was performed to evaluate,
via 6 distinct metrics, the effectiveness and accuracy of our system. The rest of the paper will be organized as follows.
The methodology will be presented in Section 2, which will be followed by a thorough description of all data sets and all
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Figure 1. The modules and pathways comprising WERITAS with the training module on the left and the segmentation module on the
right.

experiments performed on those data sets in Section 3. Then the results and a discussion will be presented in Section 4,
and finally the concluding remarks will be presented in Section 5. The methodology section will first define the notation,
and will be followed by the generation of features, the intelligently selection of features, and will conclude with the actual
segmentation of a new image.

2. METHODOLOGY

Notation

We define the set of N training images as Str = {Cn | n ∈ {1, . . . , N}}, where Cn = (C, gn) is an image scene where
C ∈ �2 represents a set of 2D spatial locations and gn(c) represents a function that returns the intensity value at any
c ∈ C. We define a feature scene as Fk = (C, gk) where gk(c) contains the feature value at pixel c ∈ C. Finally, we define
a κ-neighborhood centered on c as Nκ(c), where for ∀d ∈ Nκ(c), ‖ d− c ‖2≤ κ.

2.1 Brief Overview of WERITAS

The steps in this section correspond to the steps in Figure 1.

Training

Step 1. A large set of K texture features are generated for all training images. For our implementation, these include
gradient filters, and 1st and 2nd order statistical texture features.

Step 2. A set of pixels are sampled, and the Mahalanobis distance to the training data and the Euclidean distance to the
ground truth are calculated for all pixels. This allows the correlation between the 2 distances to be determined for each
feature.

Step 3. The features’ Mahalanobis distances are linearly combined to maximize the correlation coefficient. This results
in a set of features (and corresponding weights) which yield the highest correlation between Euclidean and Mahalanobis
distance when linearly combined.
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Segmentation

Step 4. The same K texture features from Step 1 are generated for a test image.

Step 5. A region is search near each landmark for the object border, and each potential pixel has a neighborhood sampled
from the features selected in Step 3.

Step 6. The pixel with the lowest weighted average of Mahalanobis distances is presumed to be a better location for the
object border.

Step 7. The shape model is updated to fit the newly found landmark points.

Step 8. The resolution is increased (if possible), and the process repeats at Step 5 until convergence.

2.2 Feature Extraction

For ∀Cn ∈ Str,K features scenes Fn
k = (C, gn

k ), k ∈ {1, . . . ,K} are then generated. These are generated by taking an
image Cn, and ∀c ∈ C, a function is performed on the vector S f = {gn(d) | d ∈ Nκ(c)}. For our implementation, we
used gradient,15 first order statistical, and second order statistical features, resulting in 84 total features (K = 84) defined
below.

Gradient Features

Sobel operators were convolved with Sf to detect the strength of the horizontal, vertical, and diagonal edges. In addition,
four Kirsch linear operators were convolved with Sf to detect the strength of edges normal to lines oriented 0, π/4, π/2,
and 3π/4. Finally, a set of linear Gabor kernels Gab(x, y) = exp((x ′ + y′)/σ) · cos(2πx′/λ) where σ = {1, 3, 5} and
λ = {0, π/4, π/2, 3π/4} were convolved with Sf to obtain the Gabor gradient features.

First Order Statistical Features

We obtained a series of first order statistical texture features by calculatingmean(Sf ),median(Sf),mode(Sf ), range(Sf ),
and standarddeviation(Sf ).

Second Order Statistical Features

The second order statistical texture features extracted were the Haralick features. 16 The Haralick features were calculated
from a gray level square co-occurrence matrix P , where each element (u, v) of P indicates the frequency with which two
distinct pixels d, e ∈ Nκ(c) with associated intensities gn(d) = u, gn(e) = v are adjacent. From P , the following 16 Har-
alick features were calculated: Energy, Entropy, Inertia, Correlation, Inverse Difference Moment, Information Correlation
1 and 2, Sum Average, Sum Variance, Sum Entropy, Difference Average, Difference Variance, Difference Entropy, Shade,
Prominence, and Variance.

2.3 Calculating the Mahalanobis Distances

We now wish to find the optimal linear combination ofM features, and so a set ofM features, fm,m ∈ {1, . . . ,M}}, fm ∈
{1, . . . ,K}, and weights, αm,m ∈ {1, . . . ,M}, must now be selected for each landmark point, where M < K . For
∀Cn ∈ Str, c

n is a landmark point on the border manually delineated by an expert. For each landmark point c n and
each feature k, the feature values for ∀d ∈ Nκ(cn) are denoted as the vector gn

k = {gn
k (d) | d ∈ Nκ(cn)}. The

mean vector over all n’s is given as ḡk and the covariance matrix is given as Φk. We now take are large set of pixels
Spx = {e | e ∈ Cn, n ∈ {1, . . . , N}}, and sample a neighborhood around each pixel on each feature k, which is denoted
as gk,e = {gn

k (d) | d ∈ Nκ(e)}. The number of pixels chosen to sample (|Spx|) must be large enough to encompass most
of the image, or at least a large region near the current landmark point, so that the chosen features will actually perform
well in a real segmentation task. The set of Euclidean distances to the ground truth are then calculated as

E = {‖ e− cn ‖2 | e ∈ Spx}. (1)

The set Mahalanobis distances to the training data are then calculated for each feature as

ψk = {(gk,e − ḡk)T · (Φk)−1 · (gk,e − ḡk) | e ∈ Spx}. (2)
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Figure 2. For (a) and (b), the X axis represents the α values, and the corresponding correlation values for a given feature are shown on
the Y axis. (a) shows a feature in which α̂ = 0; i.e. the correlation is not improved at all by including that feature. (b) shows a feature
in which α̂ = 0.3, with the correlation for that feature being 0.084. (c) shows the total correlation between Euclidean distances and the
linear combination of Mahalanobis distances as each fm and αm are calculated.

A problem arises in Equation 2 when (Φk)−1 is undefined. Specifically, when limited training data exists (where N <
|Nκ|), the determinant of Φk would be zero, yielding an undefined Mahalanobis distance. We overcome this limitation
by calculating the Moore-Penrose pseudo-inverse. 14 The Moore-Penrose pseudo-inverse can be calculated for any matrix,
including matrices with a determinant of 0, which would happen if N < |N κ|, and holds most of the properties of the
traditional inverse. This allows the Mahalanobis distance to be estimated without setting any requirements for the values
of κ andN .

2.4 Selecting Features

There now exists a set Euclidean distances to the ground truth, E, and a corresponding set of Mahalanobis distances ψ k

for each feature k ∈ {1, . . . ,K}, where |E| = |ψk| = |Spx|. The basic metric used to determine the accuracy of a given
feature will be the Pearson correlation coefficient17 (ϕ), defined as

ϕ(X,Y) =
1

|X| − 1

|X|∑

i=1

(
Xi − μX

σX

) (
Yi − μY

σY

)
, (3)

where X and Y are vectors, and μ and σ represent mean and standard deviation respectively. Ideally there would be a
strong correlation between the Mahalanobis distance to the training data, and the Euclidean distance to the landmark point,
so that the Mahalanobis distance decreases as the distance to the ground truth decreases. This will allow the system to
become closer to the ground truth by locating the minimum Mahalanobis distance. So we now wish to find the linear
combination of features which maximize the correlation between the Euclidean distances (E), and the resulting linear
combination of Mahalanobis distances. The best feature is given as the feature with the highest correlation; that is, f 1 =
argmaxk [ϕ(E,ψk)], and we set α1 = 1. Features fm,m ∈ {2, . . . ,M} are determined as follows. First, the optimal α is
determined for each potential feature k, denoted as α̂k. The α̂k value will be the weighting of feature k which maximizes
the correlation coefficient given the already-selected features {f 1, . . . , fm−1} and corresponding weights {α1, . . . , αm−1}.
This correlation is calculated from a weighted average of the Mahalanobis distances of all the previously selected features,
so that

α̂k = argmax
α

[
ϕ

(
E,ψf1 · α1 + . . .+ ψfm−1 · αm−1 + ψk · α)]

. (4)

Therefore, each α̂k denotes the α value that would increase the correlation the most for feature k. Several values of α and
ϕ are shown for 2 different features in Figures 2(b) and 2(a). Now the feature which increased the correlation the most
(given its optimal α̂k) is chosen, so that

fm = argmax
k

[
ϕ(E,ψf1 · α1 + . . .+ ψfm−1 · αm−1 + ψk · α̂k)

]
(5)
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and am = α̂fm . This will result in a linear combination of features which maximizes the correlation between Euclidean
and Mahalanobis distances. The ϕ values are shown in Figure 2(c) as each fm is calculated. It can be seen that after adding
about 15 features, the correlation does not significantly increase as more features are added. The algorithm below shows
how our algorithm works.

Algorithm FeatureSelect
Input: M, (N ·K) Feature images, N landmarks cn.
Output: fm, αm,m ∈ {1, . . . ,M}, fm ∈ {1, . . . ,K}
begin

0. Calculate ḡk and Φk from the N images for ∀k ∈ {1, . . . ,K};
1. Calculate ψk and E for a large number of pixels Spx (Equations 1 and 2) for ∀k ∈ {1, . . . ,K};
2. for m = 1 to M do
3. for k = 1 to K do
4. Calculate the optimal α̂k by maximizing ϕ (Equation 4);
5. endfor;
6. Calculate fm by maximizing ϕ, given all α̂k’s (Equation 5);
7. Let αm = α̂fm ;
8. endfor;

end

2.5 Using the Selected Features for an ASM Based Segmentation

The features fm,m ∈ {1, . . . ,M} are then used in a segmentation system to segment a new test image C te where Cte /∈ Str.
First, the K features are calculated from Cte, denoted as Fk = (C, gk). The traditional ASM approach is used: find new
landmark points, and then update the shape to fit these points. Since this paper focuses on the landmark border detection,
we will leave the shape updating algorithm the same as in traditional ASM’s. 1 For iteration i, we denote the current
landmark as li, so that the goal is to find li+1. To find li+1, a κ-neighborhood is searched near l i, denoted as Nκ(li).
For ∀l̂ ∈ Nκ(li), where l̂ is a potential new landmark point, a κ-neighborhood is sampled, denoted as N κ(l̂). Then, each
feature’s values are sampled from this neighborhood, denoted as g k,l̂ = {gk(d) | d ∈ Nκ(l̂)}. Finally, li+1 is found by
maximizing the weighted average of the Mahalanobis distance for the M features, so that

li+1 = argmax
l̂∈Nκ(li)

[
M∑

m=1

(
gfm,l̂ − ḡfm

)T

· (Φfm)−1 ·
(
gfm,l̂ − ḡfm

)
· αm

]
. (6)

This is the same linear combination of Mahalanobis distances which maximized the correlation between Euclidean and
Mahalanobis distance. Ideally, if there was a strong correlation between the Euclidean and the linear combination of
Mahalanobis distances, then li+1 would be closer to the true landmark point after each iteration. Once a set of new
landmarks have been selected, the shape is updated, and the system moves on to the next iteration. The algorithm below
describes exactly how the segmentation works.
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Algorithm ASMFeatureSelect
Input: A set of initial landmark points, each one denoted as l1, K feature images,
M features and weights fm, αm,m ∈ {1, . . . ,M}, fm ∈ {1, . . .K}
Output: Final set of landmark points
begin

00. Initialize i = 0
01. while ∀li �= li+1

02. Let i = i+ 1;
03. for each l̂ ∈ Nκ(li) do
04. for m = 1 to M do
05. Sample a pixels from a neighborhood surrounding l̂ on feature image fm, denoted as gfm,l̂;
06. endfor;
07. endfor;
08. Calculate li+1 by maximizing the weighted average of Mahalanobis distances (Equation 6);
09. Repeat Steps 3 - 8 for all landmark points;
10. Fit the statistical shape model to the new landmark points;
11. Increase the image resolution;
12. endwhile

end

3. EXPERIMENTS AND EVALUATION METHODS

3.1 Experimental Setup

For every image, an expert radiologist was used to manually segment the tissue border, which was used as the ground truth
for training and for evaluating the effectiveness of the automatic segmentation. All experiments were performed using a
10-fold cross validation as follows. A set of images from a single data set was randomly split up into 10 groups. To test
each group, the other 9 groups were used to train, and the segmentation system was performed on the images in the current
group. This was repeated for all 10 groups, and the resulting mean and standard deviation values were then calculated. The
system was tested on the 3 different data sets summarized in Table 1.

Table 1. Description of the data sets used to evaluate the segmentation system.
Notation Tissue Protocol Field Strength # of Slices Resolution (pixels) Resolution (mm)
D1 Prostate T2-W MRI 1.5T 128 256 × 256 140 × 140
D2 Prostate T2-W MRI 3T 83 512 × 512 140 × 140
D3 Breast DCE 1.5T 10 512 × 512 140 × 140

Each image was initialized by placing the mean shape into the center third of the image, and the entire system was
performed in a multi-resolution fashion, starting at 32 × 32 pixels. The neighborhoods N κ were set as circles with radius
of 5 pixels (κ = 5).We started with 84 features (K = 84), and selected 5 features (M = 5). For D 1 and D2 (D3 did
not have enough slices for quantitative analysis), we tested the traditional ASM, WERITAS, and an ASM using random
features, all of which are summarized as follows.

• Experiment 1: ASM. This experiment is the traditional ASM, in which fm = (intensities), αm = 1,m = {1}.

• Experiment 2: MANTRA. The outline for averaging the Mahalanobis distance for a set of random features was pre-
sented in the MANTRA paper,9 so the MANTRA experiment consists of the following: fm = random({1, . . . ,K}),
αm = 1,m ∈ {1, . . . , 5}.

• Experiment 3: WERITAS. Our new FeatureSelect algorithm with M = 5 is used to choose features fm and
weights αm for this experiment.
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3.2 Quantitative Evaluation

The quantitative metrics utilized were overlap, sensitivity, specificity, positive predictive value (PPV), mean absolute dis-
tance error (MAD), and Hausdorff distance error. 10, 18 We define a resulting automatic segmentation of the border of image
C as Ga

1(C), the set of pixels inside Ga
1(C) as Ga

2(C). The corresponding manual expert segmentation for image C is de-
noted as Gm

1 (C) for the border pixels, with Gm
2 (C) denoting the pixels inside the border. We now define our metrics as

follows. First, for the area based metrics (overlap, sensitivity, specificity, and PPV), we define the number of true positive
pixels as TP = |Ga

2(C)∩Gm
2 (C)|, the number of true negative pixels as TN = |C −Ga

2(C)−Gm
2 (C)|, the number of false

positive pixels as FP = |Ga
2(C)−Gm

2 (C)|, and the number of false negative pixels as FN = |Gm
2 (C)−Ga

2(C)|. We now
define our metrics as follows (where 1 - 4 are area based and 5 - 6 are edge based).

1. Overlap = TP/(FP + TP + FN).

2. Sensitivity = TP/(TP + FN).

3. Specificity = TN/(TN + FP ).

4. PPV = TP/(TP + FP ).

5. MAD = meand [mine ‖ d− e ‖2 | e ∈ Gm
1 (C), d ∈ Ga

1(C)].

6. Hausdorff distance = maxd [mine ‖ d− e ‖2 | e ∈ Gm
1 (C), d ∈ Ga

1(C)].

The mean and standard deviation values from each of these metrics were then run through a Student’s t-test to determine
the statistical significance of all results, with the resulting p values reported.

4. RESULTS AND DISCUSSION

4.1 Quantitative Results

Data Set #1 (D1) - 1.5T in vivo MR Prostate Images

The mean and standard deviation results from the cross validation are shown in Table 2. For this data set, to test inter-expert
variability, a second expert radiologist was asked to also segment the images, with that expert’s segmentations denoted as
”Expert 2”. In addition, a student’s t-test was performed to determine the significance of all results, and the results p-
values are shown in Table 3. It can be seen that WERITAS with M = 5 features performed significantly better in most
metrics than the traditional ASM and MANTRA with random features, which was confirmed by a t-test (p < 0.05 for
most results). The only metric in which MANTRA outperformed WERITAS (specificity) was not statistically significant.
The specificity values were extremely high in all cases due to the fact that the region of the image containing the prostate
was so small compared to the size of the image, yielding an unreasonably high TN value. In addition, the fact that the
random features did better than intensities indicates that for this data set, the feature images in general contained more
useful information than the intensities. However, the fact that WERITAS did not always give very significant differences
from MANTRA (with random features) indicates that our original set ofK features did not contain any features that could
perform extremely well. There is also a high correlation between the Overlap results from MANTRA and the Overlap
results from WERITAS (correlation = 0.73), indicating that both methods performed poorly on the same set of images,
suggesting that those images were particularly difficult to segment regardless of which features were used.

Data Set #2 (D2) - 3T in vivo MR Prostate Images

D2 shows a similar trend as D1, in that the new WERITAS method performs better than both the traditional ASM and
MANTRA with random features, which can be seen in Table 4 and shown statistically in Table 5. The traditional ASM
outperformed WERITAS in the specificity and PPV metrics, but not to any statistical significance. It’s interesting to
note that the traditional ASM outperformed the MANTRA in most of the metrics, indicating that in this data set, the
intensities were better than a plethora of random features. However, in almost all cases, an intelligent selection of features
(WERITAS) was shown to perform the best, supporting the idea of maximizing the correlation between Euclidean and
Mahalanobis distance to select features.
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Table 2. Quantitative results for D1 in terms of mean ± standard deviation from the 10-fold cross validation for the traditional ASM, the
ASM using random features (MANTRA), WERITAS, and a second expert radiologist (Expert 2). The best results for each metric are
shown in bold.

Experiment
Area Based Metrics Edge Based Metrics (mm)

Overlap Sensitivity Specificity PPV MAD Hausdorff

ASM .662 ± .154 .824 ± .159 .996 ± .004 .810 ± .192 1.851 ± 1.235 4.701 ± 3.082
MANTRA .815 ± .074 .896 ± .074 .999 ± .002 .909 ± .093 1.665 ± .793 5.189 ± 2.331
WERITAS .833 ± .069 .925 ± .058 .999 ± .001 .898 ± .082 1.509 ± .751 4.642 ± 2.093
Expert 2 .858 ± .101 .886 ± .083 .999 ± .001 .961 ± .089 1.246 ± .807 4.455 ± 2.571

Table 3. Statistically significant results for D1 between the traditional ASM, MANTRA, and WERITAS. One asterisk indicates p < 0.05,
two indicates p < 0.01, three indicates p < 0.001, and four indicates p < 0.0001.

ASM / MANTRA ASM / WERITAS MANTRA / WERITAS

Overlap**** Overlap**** Overlap*
Area Sensitivity**** Sensitivity**** Sensitivity***

Metrics Specificity**** Specificity****
PPV**** PPV****

Edge Hausdorff**** Hausdorff**** Hausdorff*
Metrics MAD**** MAD****

Table 4. Quantitative results for D2 in terms of mean ± standard deviation from the 10-fold cross validation for the traditional ASM, the
ASM using random features (MANTRA), and WERITAS. The best results for each metric are shown in bold.

Experiment
Area Based Metrics Edge Based Metrics (mm)

Overlap Sensitivity Specificity PPV MAD Hausdorff

ASM .592 ± .129 .693 ± .183 .991 ± .014 .869 ± .169 4.114 ± 1.630 9.130 ± 3.712
MANTRA .544 ± .142 .836 ± .081 .966 ± .020 .623 ± .192 6.164 ± 1.354 14.46 ± 2.948
WERITAS .765 ± .108 .908 ± .064 .988 ± .012 .840 ± .140 2.451 ± 1.587 6.900 ± 3.950

Table 5. Statistically significant results for D2 between the traditional ASM, MANTRA, and WERITAS. One asterisk indicates p < 0.05,
two indicates p < 0.01, three indicates p < 0.001, and four indicates p < 0.0001.

ASM / MANTRA ASM / WERITAS MANTRA / WERITAS

Overlap* Overlap**** Overlap****
Area Sensitivity**** Sensitivity**** Sensitivity****

Metrics Specificity**** Specificity****
PPV**** PPV****

Edge Hausdorff**** Hausdorff*** Hausdorff****
Metrics MAD**** MAD**** MAD****

4.2 Qualitative Results

Figure 3 shows a side by side comparison of the ASM system (left column), MANTRA (middle column), and WERITAS
(right column). It can be seen that in the case of D1 (rows 3 and 4), both MANTRA and WERITAS perform well, but
WERITAS performs slightly better, which is further supported by the quantitative results. In addition, in almost all the
results it can be seen that the ASM system typically undersegments, while the random features typically oversegment the
image. There is at least one representative image from the base, midgland, and apex of the prostate in rows 4, 3, and 2
respectively, showing that the advantages of WERITAS are not restricted to one region of the gland. Finally, the results
look more jagged in the images fromD1 due to the fact that the image resolution is lower than that ofD2, yielding a coarser
segmentation. Finally, it can be seen in Row 5 that a simple task, such as that presented in data set D 3 yields excellent
segmentations regardless of which features are or aren’t used, suggesting that the differences between methods are more
visible in difficult segmentation tasks.

Proc. of SPIE Vol. 7259  725905-9



Figure 3. Shown here are qualitative results with the ground truth in gray, and the resulting segmentation in white. The left column
shows the result from the ASM system, the middle column shows the result from MANTRA (random features), and the right column
shows the result from WERITAS. Rows 1 and 2 show images from D2, and rows 3 and 4 show images from D1, and Row 5 from D3.
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5. CONCLUDING REMARKS

We have presented WERITAS, a novel segmentation system which is based on the popular ASM segmentation system.
WERITAS takes a weighted average of Mahalanobis distances to more accurately detect the object border. The features
are selected in an intelligent fashion, maximizing the correlation between the Euclidean distance and the Mahalanobis
distance. The motivation behind maximizing the correlation is that when there is a high correlation, the locations with a
low Mahalanobis distance will also be closer to the ground truth, yielding a more accurate segmentation system. We have
evaluated our approach on over 200 clinical images via 6 metrics, and shown that our system is statistically better than
using the traditional approach with only intensities and statistically better than using a random set of features.
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