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ABSTRACT

Segmentation of the prostate boundary on clinical imagasegul in a large number of applications including calankat
prostate volume during biopsy, tumor estimation, and tneat planning. Manual segmentation of the prostate boyndar
is, however, time consuming and subject to inter- and irgeder variability. Magnetic Resonance (MR) imaging (MRI)
and MR Spectroscopy (MRS) have recently emerged as pragmsodalities for detection of prostate canaerivo. In

this paper we present a novel scheme for accurate and awmatstate segmentation onvivo 1.5 Tesla multi-modal
MRI studies. The segmentation algorithm comprises twosstél) A hierarchical unsupervised spectral clusteringauh
using MRS data to isolate the region of interest (ROI) cqroesling to the prostate, and (2) an Active Shape Model
(ASM) segmentation scheme where the ASM is initialized imithe ROI obtained in the previous step. The hierarchical
MRS clustering scheme in step 1 identifies spectra correipgmo locations within the prostate in an iterative fashixy
discriminating between potential prostate and non-ptestaectra in a lower dimensional embedding space. Theaspati
locations of the prostate spectra so identified are useceasitial ROI for the ASM. The ASM is trained by identifying
user-selected landmarks on the prostate boundary on T2 M#&jes. Boundary points on the prostate are identified using
mutual information (MI) as opposed to the traditional Mamalbis distance, and the trained ASM is deformed to fit the
boundary points so identified. Cross validation on 150 ptesMRI slices yields an average segmentation sensitivity,
specificity, overlap, and positive predictive value of 8986%, 83%, and 93% respectively. We demonstrate that the
accurate initialization of the ASM via the spectral clustgrscheme is necessary for automated boundary extraion.
method is fully automated, robust to system parametersgamgbutationally efficient.

Keywords: Prostate segmentation, Active shape models (ASMs), Magrestonance spectroscopy (MR8)yivo MRI,
prostate cancer, segmentation, manifold learning, rébreal clustering, non-linear dimensionality reductiepectral
clustering, graph embedding.

1. INTRODUCTION

Prostatic adenocarcinoma (CaP) is the second leading chasecer related deaths among men in America, with an es-
timated 220,000 new cases every year (Soufraerican Cancer Society). The current standard for detection of prostate
cancer is transrectal ultrasound (TRUS) guided symméimmadle biopsy which has a high false negative rate assakciat
with it.! Recently, multi-modal magnetic resonance (MR) imaging (MRmprising both structural MRI and MR Spec-
troscopy (MRS) have emerged as important tools for earlgaiemn of prostate cancer. It has been clinically shownttiet
integration of MRI and MRS could potentially improve seiviiy and specificity for CaP detectichOQur previous work
has consisted of generating computer-aided detection {G&Btems for detection of prostate cancer. In [3], CAD was
performed orex vivo prostate MR images by analyzing 3D texture features. InGAD was performed oim vivo prostate
MRS data using spectral clustering. In these systems, dsawealany other CAD systems, segmentation of the object of
interest is a necessary first step, yet segmenting the pedstanin vivo MR images is a particularly difficult task. The
prostate is especially difficult to seeiimvivo imagery because of poor tissue contrast on account of MBRla@lartifacts
such as background inhomogeneity. While the identificatithe prostate boundary is critical for calculating thegtate
volume, for creating patient specific prostate anatomicadefs, and for CAD systems, accurately identifying the faies
boundaries on an MR image is a tedious task, and manual ségfioeris not only laborious but also very subjective.

Contact Info: robtoth@gmail.com, anantm@srci.rutgens.ed



Previous work on automatic or semi-automatic prostate segation has primarily focused on TRUS imagdsLadek
et al® have proposed a scheme in which 4 points are manually selecigitialize a discrete dynamic contour, and manual
intervention is used to guide the segmentation. Pathak’epe¢sented an algorithm to detect prostate edges which were
then used as a guide for manual delineation. In [8], defotenalbpses were used as a shape model to segment the prostate
from TRUS images. Only a few prostate segmentation attefopMR images currently exist. Klein et &lhave proposed
segmenting prostate MR images based on nonrigid regtratihere they register a series of training ‘atlas’ images t
the test image, and the set of atlas images are chosen thahath (based on mutual information) the test image. The
selected atlas images are then averaged to achieve a sagjoreof the prostate in the test image. Costa éP stave
presented a 3D method for segmenting the prostate and blaitdeltaneously to account for inter-patient variabiiity
prostate appearance. In [11], polar transformations weed in addition to edge detection techniques such as nommaax
suppression to segment the prostate. A major limitatioh previous prostate segmentation attempts is that thegteost
varies widely between patients in size, shape, and texture.

A popular segmentation method is the Active Shape Model (ASM\tatistical scheme first developed in the mid-90’s.
ASMs use a series of manually landmarked training imagesteigte a point distribution model, and principal componen
analysis is performed on this point distribution model tmeate a statistical shape model.Then, the Mahalanobis
distance (MD) between possible gray values and the mearvghags (determined from the training images) is minimized
to identify the boundary of an objett-'* The MD is a statistical measurement used to determine sityilzetween sets,
and is valid as long as the gray values of the training data lawormal distribution. At this point, the shape model is
deformed to best fit the boundary points, and the procespiated until convergence. While ASMs have been used
for different applications, results of prostate segmémmagielded highly variable results in [15], with overlapeficients
ranging from about 0.15 to about 0.85. One of the main shonitegs of the ASM is that it requires careful initialization.
This is usually done by manual intervention, which can béotex] and subject to operator variability. Another method i
to start at a very low resolution of the image, overlay thetistg shape on it, and then increase the resolution, perfgrm
the segmentation at each resolut{énwhile this can work, it is not always guaranteed to work. Alas Ginneken et
al. pointed out? since the object of interest could be anywhere in the imagg; @omputationally expensive searches
could be required for initialization, contributing to a wla@verall convergence time. One such search was proposed by
Brejl et al.}” who used a shape-variant Hough transform to initialize #ggreentation. Seghers et'8lpresented a highly
promising segmentation scheme which searches the entageinyet state that properly initialized regions of interes
(ROIs) would greatly improve their algorithm’s efficiencinother limitation of ASMs lies with the inherent limitatis
in using the MD to find the object of interest. Normally, thaémgawith the minimum MD between its surrounding gray
values and the mean gray values is assumed to lie on the bofrtlez object:>'* To compute the MD, a covariance
matrix of the training gray values is constructed duringtth@éing phase, and the MD calculation uses the inverseatf th
covariance matrix. However, if the covariance matrix isrspathen the inverse matrix will be undefined, and consetyjuen
the MD will be undefined. If the number of pixels sampled isagee than the number of training images, the covariance
matrix will become sparse. For example, at least 225 trgiimimages would be required to sample ax11% window of
gray values. Therefore, either having limited trainingadat attempting to sample a large number of pixels would prove
problematic. Also, the MD assumes that the texture trainiaa has an underlying Gaussian distribution, which is not
always guaranteed.

In this paper we present a novel, fully automated prostagensatation scheme that integrates spectral clustering
and ASMs. The algorithm comprises 2 distinct stages: speclustering of MRS data, followed by an ASM scheme.
For the first stage, we perform non-linear dimensionalijuction followed by hierarchical clustering on MRS data to
obtain a rectangular ROI, which will serve as the initidliaa for an ASM. Several non-linear dimensionality redanti
techniques were explored, and graph embedding was decp®dta transform the multi-dimensional MRS data into a
lower-dimensional space. Graph embedding is a non-lineagmsionality reduction technique in which the relatiapsh
between adjacent objects in the higher dimensional spgmeserved in the co-embedded lower dimensional spaBg.
clustering of metavoxels in this lower-dimensional spams-informative spectra can be eliminated. This dimeradion
reduction and clustering is repeated hierarchically ttdygebounding box encompassing the prostate. In the secagd,st
the prostate bounding box obtained from the spectral gingtscheme serves as an initialization for the ASM, in which
the mean shape is transformed to fit inside this bounding blearby points are then search to find the prostate border,
and the shape is updated accordingly. The afore-mentiomédtions of the MD led us to use mutual information (MI) to
calculate the location of the prostate border. Given twogiesaor regions of gray valués and/,, the MI between’; and
I, is an indication of how well the gray values can predict onatlaer?° It is normally used for registration and alignment



tasks2® but in this paper we use MI to search for the prostate boundéoy each training image, we take a window of
intensity values surrounding each manually landmarkedtpmi the prostate boundary. We then average those intensity
values to calculate the mean ‘expected’ intensity valué iflea behind the method is that if a pixel lies on the prestat
border, then the Ml between its surrounding gray values thamintensity values of the border will be maximum. The
advantages of using MI over MD are the following: (1) the nembf points sampled is not dependent on the number of
training images, and (2) MI does not require an underlyingssan distribution, as long as the gray values are predicti
of one another. Finally, once a set of pixels presumablytéztan the prostate border are determined (henceforthreefer
to as ‘goal points’), we update the shape to best fit thesepgmats. We introduce a weighting scheme for fitting the goal
points, which was first proposed by Cootes ef?al’he goal points are weighted using two values. The first visliiee
normalized Ml value. Ml is normalized by the Entropy Cortla Coefficient (ECCY! which rescales the Mi values to be
between 0 and 1. The second weighting value is how well theesfibeach goal point during the previous iteration, which
is scaled from 0 to 1. We call this the ‘outlier weight,” whéfréhe shape model couldn’t deform close to a goal point, it
is given a value close to 0, and if the shape model was ableftordeclose to a goal point, it is given a value close to 1.
These two terms are multiplied together to obtain the finagjtiéng factor for each landmark point. It's important tot@o
that as in traditional ASM schemes, the off-line trainingpé needs to only be done once, while the on-line segmemtatio
is fully automated.

The primary contributions and novel aspects of this work are

o Afully automated scheme, by performing spectral clusgeon MRS data to obtain a bounding box, used to initialize
an ASM search.

e Using Ml instead of MD to find points on the prostate border.

e Using outlier distances and Ml values to weight the landnpanikits.

Finally, an exhaustive evaluation of the model via rand@uizross validation is performed to asses segmentation
accuracy against expert segmentations. In addition, mpaielmeter sensitivity and segmentation efficiency are also
assessed. The rest of the paper will be organized as followSection 3, we present the methodology for initializing th
bounding box by performing spectral clustering on avadd¥dRS data. Then, in Section 4, we present the methodology for
performing the segmentation, which will include finding fhr@state border using Ml, and updating the shape based on a
weighting scheme. This will be followed by Section 5, givihg results compared to an expert radiologist’s segmenisti

2. SYSTEM OVERVIEW
2.1 Notation

We define a spectral sceile = (C‘, f) whereC is a 3D grid of metavoxels. For each spatial locatior C' there
is an associated 256-dimensional valued spectral vectey = [fj(é) | j e {1, ...,256}], where f;(¢) represents the

concentration of different biochemicals (such as creagincitrate, and choline). We define the associated MR iitjens
sceneC = (C, f) whereC represents a set of spatial locations, ditd) represents a function that returns the intensity
value at any spatial locatione C. It's important to note that the distance between any twaeetjt metavoxels, d €

C,|| ¢ —d ||, (where| - || denotes the., norm) is roughly 16 times the distance between any two adfzsmatial voxels
¢, d € C. We define as-neighborhood centered ene C asN,(c) where forvd € N, (c),|| d — ¢ ||< &,¢ & Ni(c).

In addition, the set of pixel intensities for theneighborhood centered anis defined ag;(c) = [f(d) | d € N (c)].
Finally, for any seCC, we definglC| as the cardinality of’. Table 1 lists the notation and commonly used symbols for the
paper.

2.2 Data Description

The spectral datasets (consisting of both MRI and MRS da] tor the study were collected during the ACRIN multi-
site trial (bttp : //www.acrin.org/6659_protocol.html). All the MRS and MRI studies were 1.5 Tesla. The MRI studies
were axial T2 images obtained from 19 patients. The 19 3Desumbmprised a total of 148 image sections. These sections
correspond to either the base, midgland, or apex of theatmsThree distinct 2D ASM models were constructed, one
each for the base, midgland, and apex. The ground truth wasndeed by manual outlining of the prostate border on
each section by an expert radiologist.



Table 1. List of notation and symbols used.

| Symbol | Description | Symbol | Description |
C MRI scene C MRS scene
Set of pixel coordinates if C Set of metavoxel coordinatesh
c A pixelin C é A metavoxel inC'
f(o) Intensity value at F(¢) Spectral content at
N (c) x-neighborhood near F.(c) | Setofintensity values ford € N, (c)
X Set of landmark points, whedé C C T(X) | Affine transformationgd” applied toX
X Set of goal points wherX c C b Variable controlling the ASM shape
T Expected gray values for the’” landmark point K Number of training images

2.3 Brief Outline of Methods

Figure 1 illustrates the modules and the pathways comprimim automated segmentation system. The first step consists
of performing non-linear dimensionality reduction (gragghbedding) on spect@(é) to embed these spectra non-linearly

in a lower dimensional space. The embedded spectra, repeesgow as their corresponding dominant Eigenvectors, are
clustered into clusters corresponding to informative lfimitor around the prostate) and non-informative spectrakba
ground spectra lying outside the prostate). The spectrad@rdbminant, non-informative cluster are eliminated. This
process repeats until a bounding box containing the pe@&atbtained. At this point, the set of prostate trainingges

are manually landmarked, from which the shape and intemsitymation is obtained. This landmarking can be done
off-line, and only needs to be done once to construct a tdaik®M model consisting of both shape and intensity infor-
mation. The mean shape is then transformed to the boundixngieeiously obtained from the MRS data, which serves
as the landmark points for the first iteration. Then, for eietation, a technique maximizing Ml is performed to find
pixels on the prostate border. Finally, these landmarksvaighted, and the shape is updated to best fit the points on the
border, yielding the next iteration’s landmark points. Timecess is repeated until convergence is obtained, neguittia
segmentation of the prostate.

i Train Shape Model and Expected Gray Valles
Input MRS Manifold P P Y
spectra learning to : l
embed spectrg Obtain MRS
Bounding — Overlay Mean Shape
! l . Rectangle
Identify and Unsupervised
eliminate dominante clustering of [
non-informative spectra in lowe Update the,_ | Use mutual information
cluster dimension shape to find prostate border

Figure 1. Flowchart for segmentation algorithm, with the MRodule shown on the left and the ASM module shown on the.right

3. MRSMETHODOLOGY
3.1 Non-Linear Dimensionality Reduction via Graph Embedding

The spectra(¢), for ¢ € C, lie in a 256 dimensional space. Hence, our aim is to find aneelting vectorG(¢) for
ve € C, and its associated class(informative or non-informative) such that if the distasdeetween elements af are
well preserved in the lower dimensional space. Hence if woatglsé, d € C both belong to class, then|| G(¢) — G(d) ||
should be small. To compute the optimal embedding, we firBhel@ matrixiV € RI¢1*IC| representing the similarity
between all objects in'. Forve, de C,W is defined as

W(L(¢), L(d)) = e~ IF@O-F@] )



where L(¢) represents a unique index positionf= (z,y, z) derived from itsz, y, z coordinates in 3D space. The
embedding vectof is obtained from the maximization of the function

GT(D - W)G
Ew(G) = 2”YW7 2)
wherey = |C| — 1. In addition,D is a diagonal matrix where fofé € C, the diagonal elemenrt.(¢), L(¢)) is defined
asD(L(¢),L(¢)) = > jca W(L(C), L(d)). The embedding space is defined by the Eigenvectors condmpto the
smallests Eigenvalues of D — W)G' = ADG. A matrix M € RIC1x8 of the first3 Eigenvectors is constructed, and
forvé € C,G(¢) is defined as rowL(¢) of M. G(¢é) is therefore a vector consisting of element numbét) from each
of the first3 Eigenvectors, which represents thalimensional Cartesian coordinates. The graph embedttjogithhm is

summarized below.

Algorithm Graph Embedding
Input: C, F'(¢) forve € C
Output: G(¢) forve e ¢

begin
0. Define a unique element mappihgwherel < L(¢) < |C| andL(é) # L(d) for V¢, d € C;
1. Define dC| x |C| matrix W, whereW (L(¢), L(d)) = e~ IF@-F @l for ve, d € C;
2. Define dC| x |C| matrix D, where each diagonal element has a valub@i(¢), L(¢)) = > dee W(L(e), L(d));
3. Calculate the Eigenvalues and Eigenvectordot W)G = ADG;
4. Construct dC| x 3 matrix M of the first3 Eigenvectors, where each column is an Eigenvector;
5. Forvé e C, define the vectof(¢) as rowL(é) of M;
end

O 5000 10000 15000 20000

Figure 2. Spectral grids for a single slice witttirare shown superimposed on the T2 MRI section fox{g)(b) C1, and (c)C2. Note
that the size of the grid reduces frar x 16 metavoxels (a) t& x 3 metavoxels (c) by elimination of non-informative spectratbe
16 x 16 grid. Note the white box (shown with dashed lines) in (c)respnting the rectangular ROI centered on the prostate. e
the embedding plots of (d), (e) C1, and (f)Cs, clustered each into the 3 clustérg, V,2, andV;? in lower dimensional space.



3.2 Hierarchical Cascade to Prune Non-informative Spectra

At each iteratiorh, a subset of metavoxely, c C'is obtained by eliminating the non-informative spectrae Tiretavoxels

¢ € C), are aggregated into clustevg, V2, V3 by applylngk-means clustering to all € Cj, in the low dimensional
embeddind,(¢). Initially, most of the locationg € C, correspond to zero padded or non informative spectra. Tdrere
while the unsupervised clustering results in 3 clusteesdibminant cluster (the cluster with the most number of etdg)e

is non-informative and is eliminated. Figure 2(a) représenl6<16 MRS grid, superimposed on the corresponding T2
MR image. After the first iteration, the outer voxels contiagnzero padded spectra are removed, and the grid becomes
an 8x16 grid (Fig. 2(b)). The scheme is recursed until a final semefavoxelsC; is obtaining, serving as an ROI
containing the prostate (Fig. 2(c)). Whil¢ can represent a constant number of iterations, the MR dadalccontains
the information about the size of the prostate, therebynatig the desired value qﬁH| to be known beforehand. The
algorithm below describes precisely how our methodologykaioAlso note that while it is presented with a constant
as an input, it is readily extendable to include prior infatimn about the desired value |63’H|.

Algorithm Hierarclust M RSprostate
Input: F(é) forvée e C, H
Output: Cy
begin
0. Initialize Cy = C;
1.forh=0to(H —1)do
2 Calculate’;, (¢) for Vé € Cy, asGy, = GraphEmbedding(C,, F);
3 Apply k-means clustering o6, (¢) for V¢ € C to obtain clusters’,, V.2, V;2;
4. Identify largest clustev,™**;
5 Create set’, 1, C (), by eliminating allé € V,"* from Cy,;
6.endfor
end

4. ASM METHODOLOGY
4.1 Training the Shape M odel and Expected Gray Values

Sep 1: The training phase begins by using training images of obligxial slices and manually selectifg landmarks

on the prostate boundary. The setfftraining images is denoted &8 = {C* | « € {1,..., K}}. The apex and the

2 posterolateral-most points on the prostate are landrdade the remainingd/ — 3) landmarks are equally spaced
between these landmarks. Therefore, each training ii&ge S* has a corresponding set of landmabkk$ c C, where

X ={c® |me{l,.. M}}, and where?, = (z2,,v) denotes the coordinates of thé” landmark point irCc®.

Sep 2: These shapes are aligned using a modified Procrustes analgsiescribed in [14]. Figures 3(a) and 3(b) show
the training landmark points before and after alignmentcéihe training shapes have been aligned, the mean 3ape
is defined aX = {¢,,, | m € {1,..., M}}, wherez,, = (T, ¥,,) andz,, = & >_, 2% andy,, = = >, vy%. Then,
principal component analysis is performed as per the teclendescribed in [12], so that any valid prostate sh¥pzan

be represented as

X=T(X+P-b) ®3)

whereT is an affine transformation mappinig,is the variable controlling the shape, aRds a matrix with each column
representing an Eigenvector. Out of the Eigenvectors, only the first are needed to explain most (98%) of the training

variation, where if\,. is ther*” Eigenvalue; is as small as possible such tl@ﬁf:l Ar) > (0.98 . Zi\il /\,‘). Therefore,

|b| = 2, andP is a matrix consisting of only the first Eigenvectors. In our experiments, we represented validtat®
shapes as vectdr of length 18, with each element Inconstrained betweeh?2.5 standard deviations, with one standard
deviation for the-*" element inb given asy/\,..

Sep 3: The mean gray values must now be calculated for each landpmank, which will represent the expected gray
values for the prostate border. First, we takeftlﬁrwghborhood centered on eagh asN, (%), wherea € {1,..., K}.
Then, forvde € Ni(c2,), we definef(d,) = % >, f(d%), whereu € {1,...,|Ni(cm)|} Finally, the expected gray
values are defined &;,, = F.(cm) WhereF(c,,) = [f(du) |u € {1,..., |Nﬁ(cm)|}]. This concludes the off-line
training phase of the segmentation system, with the va&Xl P, andg,,,m € {1, ..., M} comprising a trained ASM
model.




(b)
Figure 3. Training landmark points in (a), aligned in (b)mX shown in black X, encompassed by the smallest possible rectangle, is

shown in the top left corner of (c). In (dX is seen highlighted on the MRS bounding box after being foaeed to yield the initial
landmarksX*.

4.2 Initializing the ASM and Using M utual Information to Find the Prostate Border

At this point, we define a new image to search for the prostteescen€ = (C, f) whereC ¢ St. The very first step
of the system is to initialize the landmarks for the firstatéon, X' (whereX! c (). To do this, the smallest rectangle
containingX, shown in Fig. 3(c), has its corners aligned to the cornerthefoounding box obtained from the MRS
data. The scaling and translation transformatidnssed to align the two rectangles are applieXioyielding the initial
landmark points aX! = 7'(X). Figure 3(d) showX! initialized to the MRS rectangle.

A set of points presumed to lie on the prostate border must imwalculated. For the!” iteration, the current
landmark points”,,m € {1, ..., M} are denoted by the s&" and the set of pointg”,,m € {1,..., M }} presumed to
lie on the prostate border is denoted by theX&t The pixels surrounding eactj,, denoted asV,,(c?,), are all possible
locations for the prostate border. Far; € N, (c,), a set of nearby intensity valués (c;) is compared witty,, using
mutual information (MI). One common way to calculate a ndirea MI value is by calculating the Entropy Correlation
Coefficient (ECC)' between 2 sets of values.dfandb are 2 sets of intensity values, we denote the normalized Mieva
between them aBCC(a, b). The locationc; with the highest mutual information (M) value betwegp(c;) andg,, is
denoted as”,. Therefore, we now define the set of goal pointXas= {&”, | m € {1,..., M}} where

cr = argmax (ECC (Fx(¢;),G,m)) (4)

Cj

andc; € N, (). Figure 4(a) shows the Ml values for eache N, (c},) as pixel intensities, with the brightest pixel
representing),. Ideally,é would lie exactly on the border of the prostate. It is impotta note that the number of pixels
sampled (¥, | and|g,,,|) need not necessarily equal the number of pixels to seakéhj)( In fact, the windows don’'t even
have to be the shame shape, although for our purposes westarilsi used rectangles, as seen in Fig. 4(a).

4.3 Updating the Shape

X" must now be deformed tX™. At this point we introduce a weighting scheme for updatimg $hape. The vector of
weights is denoted &" = {I'?", | m € {1,..., M }}, where each'?, is a weight associated with the landmark paift
First, the Ml values for each goal poi#, € X™ are compared to one another. The goal point with the highésaMe
betweenF, (¢?,) andyg,, is given a weight of 1, the goal point with the lowest MI valgegiven a weight of 0, and the
remaining points are linearly rescaled to lie between 0 anthk reasoning is that a high normalized Ml value indicates
that the intensity values surrounding the goal point aréligigredictive of the mean of the training data, and should be
weighted heavily. After the first iteration, each Ml weigladwe is multiplied by an ‘outlier weight,’ which is based oovih
well the shape model was able to deform to the goal pointsidtinie previous iteration. Each Ml weight value is multidlie
by a number between 0 and 1, which is calculated as a linezalieg of || ¢! — ¢, H*l. This product s the final weight
for each landmark poin;”,. Figure 4(b) shows several outlier weights wh&te! are shown as white diamonds and all
cp, are indicated by the white line. Most ASM systems don'’t alibw current iteration to deform completely to the goal
points. Cootes et al., for example, limit the number of ExlatX” can move to between 0 and 4 pixels per iterafion.
We have chosen instead to linearly resdalgo thatmin,, (T') = 0.25 andmax,, (T') = 0.75. This will prevent the shape
model from completely fitting the goal points, as each landkpaint can only possibly move between 25% and 75% the
distance to its corresponding goal point. These number$ decessarily have to be 0.25 and 0.75, but we felt these were
reasonable constraints. Next, the landmaxksare aligned to the goal poin&" using affine transformations. This is
done using a weighted Procrustes analyisjth the weight for them!” landmark defined aB” , resulting in an affine



Figure 4. (a) Search ared,, (cpy, ) shown in the gray rectangle with the MI values for eaghe N, (cj,,) shown as pixel intensities. A
brighter intensity value indicates a higher Ml value betwé& (c;) andg,,. Also shown is the point with the highest Ml valug,, .
Shown in (b) are outlier weights witK™ shown as the white line ank”~' shown as white diamonds. Note that when the shape has
deformed very closely to a goal point, the weighting is a 1\whdn a goal point is too much of an outlier, the weighting is a 0

transformation mappin@'. However, only using a global affine transformation is natwagh to optimally reach the goal
points, which is the reason statistical shape models arergtau. As described in [12], the shape parameter fonthe
iteration is defined as

0 ifn=0
b" = ’ 5

{b"‘l—i-P_l-dx if n >0, ®)
wheredx = {dz, | m € {1, ..., M}} anddx,,, =|| é%, —T(c) || -T'm, which allows the weights to be taken into account
when updating the shape. Finally, the affine transformatioare applied to this new shape, yielding the next iteration’s
landmarks as

X" =T(X +P-b"). (6)

The system then repeats searching for new goal points aratingdhe shape, until the mean Euclidean distance between
X" andX"*! is less than 0.2 pixels, at which time convergence is assumed

4.4 Evaluation Methods

Once the final landmarks have been determined, this shapenigared to a manually outlined expert segmentation. The
area based metrics used to evaluate the segmentation systguositive predictive value (PPV), specificity, sengitiv
and global overlap coefficient, with values closer to 1 iatiing better result3!® The edge based metric used to evaluate
the system are mean absolute distance (MAD) and Hausdsté#friie, which are given in units of pixels with values closer
to 0 indicating better resulfs. To evaluate the system, the optimal parameters are first emapwhich is followed by a
randomized cross validation. To perform the cross valiaative let the variable represents the number of images to test
with, and P represent the total number of images in a certain groupgeéthex, midgland, or base). For each group, we
randomly selecy images to test with, and generate an ASM model with- ¢) images. Averaging the metric results for
thoseq images gives a set of mean valug$ for sensitivity, specificity, overlap, PPV, MAD, and Hawsftf distance. We
repeat this 50 times and report the mean metric valis$, @nd the standard deviationsg) over the 50 iterations.

4.5 Parameter Selection and Sensitivity Analysis

To evaluate the system, the optimal parameter values mustrnputed. First, the search are¥, ) was set as a 163
rectangle, centered on the current landmark point andetat face in the normal direction of the shape at that post, a
shown in Fig. 4(a). This was assumed to be large enough tamgueess the prostate border given a decent initialization,
without compromising computational costs. Using this skaize, the best sampling sizég.() were determined for each
group of images. For sampling, we used rectangles rotatdeiname direction as the search rectangles. The parameters
that were tested were the sampling rectangle’s height adthyeach varied between 1 and 50 pixels. The best sampling
rectangle sizes were determined to bel3, 37x39, and 3% 31 pixels for the base, midgland, and apex respectively.



After performing the repeated segmentations with diffesampling lengths and widths, we compared how many difteren
values gave at least a minimum metric value, shown in Fig. d&.ekample, 100% of the sampling sizes tested (y-axis)
achieved sensitivity values of at least 0.60 (x-axis), ebihly 3% of the sampling sizes (y-axis) achieved sengjtixatues

of at least 0.88 (x-axis).

Once the optimal parameters were determined, we evalula¢eninportance of a correct initialization by randomly
changing the initialization bounding box. We chose randddisRo initialize the ASM system, and compared these to the
ROls obtained from the MRS data. Figure 6 shows the effecthafging the initialization, where the distance between
the corners of the MRS ROI and the random ROI is plotted on thges. The downward slopes in Fig. 6 show that
the segmentation becomes worse as the initial ROI is mouwtkdeiuaway from the MRS box, suggesting that a proper
initialization is vital for an accurate segmentation, andttthe spectral clustering of MRS data can provide thisirequ
initialization.
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Figure 5. A graph of how many different sampling sizes (y paihieved a certain metric value (x axis).
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Figure 6. Effect of changing the initialization where thexis represents the distance (in pixels) between the cooféhe initialization
used and the corners of the MRS box. The y-axis represensettsitivity values in (a), the overlap values in (b), the RRMes in (c),
and the MAD values in (d). Note the downward slopes in (a):Md)ich suggest that on average the segmentation becomes a®the
initialization is moved away from the MRS box.

5. RESULTSAND DISCUSSION
5.1 Qualitative Results

Several qualitative results for the MRS initialization atewn in Fig. 7. In each of these images, the final bounding box
from the MRS spectral clustering scheme is shown in whiterlaid on the original MR images. In all of the results,
the bounding box obtained from MRS data accurately encoseplthe prostate, validating the use of spectral clustering
on MRS data for initializing a segmentation system. Quilitaresults for the resulting segmentation are shown in Fig
8. In these images, the ground truth (as determined by arrt®gve shown in black, and the results from the automatic
segmentation system are shown in white. The prostate insgeen in Fig. 7 don’t correspond to the prostate images in
Fig. 8, but in both figures there is at least one image from #sepmidgland, and apex.



Figure 7. (a) - (h) show the 8 different initialization boimgl boxes obtained from the MRS data in white, overlaid onattiginal MR

images. Note that in each case the bounding box containsdseafe.

Figure 8. (a) - (h) show qualitative results with groundfrint black, and results from automatic segmentation of tstate in white.

5.2 Quantitative Results

Table 2 shows the results from the randomized cross vadidakescribed in Section 4.4. We also calculated a confidence
interval for the mean values, which is derived from the Staide-distribution and the standard error. So for any of the
metric values, after repeating 50 times, the 99% confiderteeval is given ag +0.3787¢. The images from the base had
the best results, yielding sensitivity, specificity, oegrland PPV values as high as 0.89, 0.86, 0.83, and 0.92 tieshec
and MAD and Hausdorff distance as low as 2.6 and 8.2 pixefseaively. The apex, however, yielded the worst results
due to high variability in appearance between images, asas¢he close proximity to surrounding tissues. Also, since
represents the number of images to test wjtk ({3, 5, 10}), a higher value of indicates less images to train with, which
was shown to slightly decrease accuracy for each group.llf;itlae PPV values were consistently the highest values,
suggesting that the segmentations tended to have minitsalgasitive area.



Table 2. Results over 50 trials, where q represents the nuafbimages to leave and out and test with for each tfialepresents the
mean metric value over all 50 trials, andepresents the standard deviation over all 50 trials.

Sensitivity Specificity Overlap PPV MAD Hausdorff
Group q _ _ _ _ _ _

i | o i | o i | o [ [ i | o

3 || 0.892| 0.048|| 0.863| 0.056 | 0.826| 0.036| 0.924| 0.035| 2.625| 0.599| 8.192| 1.912
Base 5 || 0.884| 0.052 | 0.852| 0.050 0.818| 0.047|| 0.917| 0.044 || 2.624| 0.551| 8.298| 1.727
10 || 0.883| 0.031| 0.855| 0.032|| 0.815| 0.028 || 0.920| 0.024| 2.804| 0.371| 8.791| 1.074
3 || 0.846| 0.073|| 0.863| 0.061 | 0.785| 0.062| 0.925| 0.037| 3.467| 1.222|| 9.594| 2.597
Midgland | 5 || 0.872| 0.038| 0.864| 0.045|| 0.810| 0.034| 0.926| 0.029| 3.012| 0.641 | 9.008| 1.646
10 || 0.851| 0.030| 0.862| 0.030|| 0.789| 0.027 || 0.924| 0.019| 3.367| 0.543 || 9.556| 1.451
3 || 0.847| 0.075|| 0.817| 0.079| 0.749| 0.064 | 0.881| 0.067| 3.821| 1.085|| 11.06| 3.106
Apex 5 || 0.824| 0.056|| 0.823| 0.059| 0.733| 0.050| 0.887 | 0.046| 3.927| 0.758|| 11.06| 1.863
10 || 0.833| 0.050| 0.810| 0.049|| 0.730| 0.037|| 0.876| 0.039| 4.004| 0.581 || 11.24| 1.514

6. CONCLUDING REMARKS

In this paper, we have presented a scheme that integratessiomality reduction and hierarchical clustering on MR&d

to yield a fully automatic and accurate ASM based prostajensatation method om vivo MR data. Performing spectral
clustering on MRS data to obtain an initial ROl is a significaovel aspect of our work, as the method is fully automated
and does not require any manual initialization. In additiva have also shown how MI could be successfully used as part
of an ASM system, providing yet another novel aspect to onese. Finally, we have performed an exhaustive evaluation
to demonstrate the accuracy, efficiency, and robustnessraystem. Comparison of our segmentation system with other
prostate segmentation schemes show that our system perédieast as well, if not better, than other systems. Klein et
al® have reported a mean overlap of 0.82, and Zhu &t &ave overlap coefficients ranging from about 0.15 to about
0.85, while our mean overlap coefficients range from 0.730.826. Costa et df result in mean sensitivity and PPV
values of 0.75 and 0.80 respectively for the prostate, wlideachieved mean sensitivity and PPV values of 0.892 and
0.926 respectively.

However, there are certain cases in which our automatic eetation performs poorly (Fig. 9). Figure 9(a) shows
the poor initialization resulting in the segmentation shaw Fig. 9(b). Figure 9(c) shows a proper initialization,iahh
still failed because of the lack of a clear prostate edgeebtiitom right corner of the prostate (Fig. 9(d)). Limitato
include high variability in prostate appearance betwediepts, as well as problems such as unclear edges, or edges th
are simply not predictive of one another. Future work wileaipt to overcome these limitations.

Figure 9. Two different initializations are shown in (a) eyl with their respective resulting segmentations shawb) and (d). In (a)
and (c), the rectangular bounding box, calculated from tfRS\lata, is shown as a white rectangle. In (b) and (d), thengrowth is
shown in black, and the results from the automatic segmienta shown in white. Note that the MR images shown in (b) afjcate
the same images shown in (a) and (c) respectively.
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