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ABSTRACT

Segmentation of the prostate boundary on clinical images isuseful in a large number of applications including calculating
prostate volume during biopsy, tumor estimation, and treatment planning. Manual segmentation of the prostate boundary
is, however, time consuming and subject to inter- and intra-reader variability. Magnetic Resonance (MR) imaging (MRI)
and MR Spectroscopy (MRS) have recently emerged as promising modalities for detection of prostate cancerin vivo. In
this paper we present a novel scheme for accurate and automated prostate segmentation onin vivo 1.5 Tesla multi-modal
MRI studies. The segmentation algorithm comprises two steps: (1) A hierarchical unsupervised spectral clustering scheme
using MRS data to isolate the region of interest (ROI) corresponding to the prostate, and (2) an Active Shape Model
(ASM) segmentation scheme where the ASM is initialized within the ROI obtained in the previous step. The hierarchical
MRS clustering scheme in step 1 identifies spectra corresponding to locations within the prostate in an iterative fashion by
discriminating between potential prostate and non-prostate spectra in a lower dimensional embedding space. The spatial
locations of the prostate spectra so identified are used as the initial ROI for the ASM. The ASM is trained by identifying
user-selected landmarks on the prostate boundary on T2 MRI images. Boundary points on the prostate are identified using
mutual information (MI) as opposed to the traditional Mahalanobis distance, and the trained ASM is deformed to fit the
boundary points so identified. Cross validation on 150 prostate MRI slices yields an average segmentation sensitivity,
specificity, overlap, and positive predictive value of 89%,86%, 83%, and 93% respectively. We demonstrate that the
accurate initialization of the ASM via the spectral clustering scheme is necessary for automated boundary extraction.Our
method is fully automated, robust to system parameters, andcomputationally efficient.

Keywords: Prostate segmentation, Active shape models (ASMs), Magnetic resonance spectroscopy (MRS),in vivo MRI,
prostate cancer, segmentation, manifold learning, hierarchical clustering, non-linear dimensionality reduction,spectral
clustering, graph embedding.

1. INTRODUCTION

Prostatic adenocarcinoma (CaP) is the second leading causeof cancer related deaths among men in America, with an es-
timated 220,000 new cases every year (Source:American Cancer Society). The current standard for detection of prostate
cancer is transrectal ultrasound (TRUS) guided symmetrical needle biopsy which has a high false negative rate associated
with it.1 Recently, multi-modal magnetic resonance (MR) imaging (MRI) comprising both structural MRI and MR Spec-
troscopy (MRS) have emerged as important tools for early detection of prostate cancer. It has been clinically shown thatthe
integration of MRI and MRS could potentially improve sensitivity and specificity for CaP detection.2 Our previous work
has consisted of generating computer-aided detection (CAD) systems for detection of prostate cancer. In [3], CAD was
performed onex vivo prostate MR images by analyzing 3D texture features. In [4],CAD was performed onin vivo prostate
MRS data using spectral clustering. In these systems, as well as many other CAD systems, segmentation of the object of
interest is a necessary first step, yet segmenting the prostate from in vivo MR images is a particularly difficult task. The
prostate is especially difficult to see inin vivo imagery because of poor tissue contrast on account of MRI related artifacts
such as background inhomogeneity. While the identificationof the prostate boundary is critical for calculating the prostate
volume, for creating patient specific prostate anatomical models, and for CAD systems, accurately identifying the prostate
boundaries on an MR image is a tedious task, and manual segmentation is not only laborious but also very subjective.
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Previous work on automatic or semi-automatic prostate segmentation has primarily focused on TRUS images.5–8 Ladek
et al.6 have proposed a scheme in which 4 points are manually selected to initialize a discrete dynamic contour, and manual
intervention is used to guide the segmentation. Pathak et al.7 presented an algorithm to detect prostate edges which were
then used as a guide for manual delineation. In [8], deformable ellipses were used as a shape model to segment the prostate
from TRUS images. Only a few prostate segmentation attemptsfor MR images currently exist. Klein et al.9 have proposed
segmenting prostate MR images based on nonrigid registration, where they register a series of training ‘atlas’ images to
the test image, and the set of atlas images are chosen that best match (based on mutual information) the test image. The
selected atlas images are then averaged to achieve a segmentation of the prostate in the test image. Costa et al.10 have
presented a 3D method for segmenting the prostate and bladder simultaneously to account for inter-patient variabilityin
prostate appearance. In [11], polar transformations were used in addition to edge detection techniques such as non-maxima
suppression to segment the prostate. A major limitation with previous prostate segmentation attempts is that the prostate
varies widely between patients in size, shape, and texture.

A popular segmentation method is the Active Shape Model (ASM), a statistical scheme first developed in the mid-90’s.
ASMs use a series of manually landmarked training images to generate a point distribution model, and principal component
analysis is performed on this point distribution model to generate a statistical shape model.12 Then, the Mahalanobis
distance (MD) between possible gray values and the mean grayvalues (determined from the training images) is minimized
to identify the boundary of an object.12–14 The MD is a statistical measurement used to determine similarity between sets,
and is valid as long as the gray values of the training data have a normal distribution. At this point, the shape model is
deformed to best fit the boundary points, and the process is repeated until convergence. While ASMs have been used
for different applications, results of prostate segmentation yielded highly variable results in [15], with overlap coefficients
ranging from about 0.15 to about 0.85. One of the main shortcomings of the ASM is that it requires careful initialization.
This is usually done by manual intervention, which can be tedious, and subject to operator variability. Another method is
to start at a very low resolution of the image, overlay the starting shape on it, and then increase the resolution, performing
the segmentation at each resolution.16 While this can work, it is not always guaranteed to work. Also, as Ginneken et
al. pointed out,16 since the object of interest could be anywhere in the image, very computationally expensive searches
could be required for initialization, contributing to a slow overall convergence time. One such search was proposed by
Brejl et al.,17 who used a shape-variant Hough transform to initialize the segmentation. Seghers et al.18 presented a highly
promising segmentation scheme which searches the entire image, yet state that properly initialized regions of interest
(ROIs) would greatly improve their algorithm’s efficiency.Another limitation of ASMs lies with the inherent limitations
in using the MD to find the object of interest. Normally, the point with the minimum MD between its surrounding gray
values and the mean gray values is assumed to lie on the borderof the object.12–14 To compute the MD, a covariance
matrix of the training gray values is constructed during thetraining phase, and the MD calculation uses the inverse of that
covariance matrix. However, if the covariance matrix is sparse, then the inverse matrix will be undefined, and consequently
the MD will be undefined. If the number of pixels sampled is greater than the number of training images, the covariance
matrix will become sparse. For example, at least 225 training images would be required to sample a 15×15 window of
gray values. Therefore, either having limited training data or attempting to sample a large number of pixels would prove
problematic. Also, the MD assumes that the texture trainingdata has an underlying Gaussian distribution, which is not
always guaranteed.

In this paper we present a novel, fully automated prostate segmentation scheme that integrates spectral clustering
and ASMs. The algorithm comprises 2 distinct stages: spectral clustering of MRS data, followed by an ASM scheme.
For the first stage, we perform non-linear dimensionality reduction followed by hierarchical clustering on MRS data to
obtain a rectangular ROI, which will serve as the initialization for an ASM. Several non-linear dimensionality reduction
techniques were explored, and graph embedding was decided upon to transform the multi-dimensional MRS data into a
lower-dimensional space. Graph embedding is a non-linear dimensionality reduction technique in which the relationship
between adjacent objects in the higher dimensional space ispreserved in the co-embedded lower dimensional space.19 By
clustering of metavoxels in this lower-dimensional space,non-informative spectra can be eliminated. This dimensionality
reduction and clustering is repeated hierarchically to yield a bounding box encompassing the prostate. In the second stage,
the prostate bounding box obtained from the spectral clustering scheme serves as an initialization for the ASM, in which
the mean shape is transformed to fit inside this bounding box.Nearby points are then search to find the prostate border,
and the shape is updated accordingly. The afore-mentioned limitations of the MD led us to use mutual information (MI) to
calculate the location of the prostate border. Given two images, or regions of gray valuesI1 andI2, the MI betweenI1 and
I2 is an indication of how well the gray values can predict one another.20 It is normally used for registration and alignment



tasks,20 but in this paper we use MI to search for the prostate boundary. For each training image, we take a window of
intensity values surrounding each manually landmarked point on the prostate boundary. We then average those intensity
values to calculate the mean ‘expected’ intensity values. The idea behind the method is that if a pixel lies on the prostate
border, then the MI between its surrounding gray values the mean intensity values of the border will be maximum. The
advantages of using MI over MD are the following: (1) the number of points sampled is not dependent on the number of
training images, and (2) MI does not require an underlying Gaussian distribution, as long as the gray values are predictive
of one another. Finally, once a set of pixels presumably located on the prostate border are determined (henceforth referred
to as ‘goal points’), we update the shape to best fit these goalpoints. We introduce a weighting scheme for fitting the goal
points, which was first proposed by Cootes et al.12 The goal points are weighted using two values. The first valueis the
normalized MI value. MI is normalized by the Entropy Correlation Coefficient (ECC),21 which rescales the MI values to be
between 0 and 1. The second weighting value is how well the shape fit each goal point during the previous iteration, which
is scaled from 0 to 1. We call this the ‘outlier weight,’ whereif the shape model couldn’t deform close to a goal point, it
is given a value close to 0, and if the shape model was able to deform close to a goal point, it is given a value close to 1.
These two terms are multiplied together to obtain the final weighting factor for each landmark point. It’s important to note
that as in traditional ASM schemes, the off-line training phase needs to only be done once, while the on-line segmentation
is fully automated.

The primary contributions and novel aspects of this work are:

• A fully automated scheme, by performing spectral clustering on MRS data to obtain a bounding box, used to initialize
an ASM search.

• Using MI instead of MD to find points on the prostate border.

• Using outlier distances and MI values to weight the landmarkpoints.

Finally, an exhaustive evaluation of the model via randomized cross validation is performed to asses segmentation
accuracy against expert segmentations. In addition, modelparameter sensitivity and segmentation efficiency are also
assessed. The rest of the paper will be organized as follows.In Section 3, we present the methodology for initializing the
bounding box by performing spectral clustering on available MRS data. Then, in Section 4, we present the methodology for
performing the segmentation, which will include finding theprostate border using MI, and updating the shape based on a
weighting scheme. This will be followed by Section 5, givingthe results compared to an expert radiologist’s segmentations.

2. SYSTEM OVERVIEW

2.1 Notation

We define a spectral scenêC = (Ĉ, f̂) whereĈ is a 3D grid of metavoxels. For each spatial locationĉ ∈ Ĉ there

is an associated 256-dimensional valued spectral vectorF̂ (ĉ) =
[

f̂j(ĉ) | j ∈ {1, ..., 256}
]

, wheref̂j(ĉ) represents the

concentration of different biochemicals (such as creatinine, citrate, and choline). We define the associated MR intensity
sceneC = (C, f) whereC represents a set of spatial locations, andf(c) represents a function that returns the intensity
value at any spatial locationc ∈ C. It’s important to note that the distance between any two adjacent metavoxelŝc, d̂ ∈
Ĉ, ‖ ĉ − d̂ ‖, (where‖ · ‖ denotes theL2 norm) is roughly 16 times the distance between any two adjacent spatial voxels
c, d ∈ C. We define aκ-neighborhood centered onc ∈ C asNκ(c) where for∀d ∈ Nκ(c), ‖ d − c ‖≤ κ, c /∈ Nκ(c).
In addition, the set of pixel intensities for theκ-neighborhood centered onc is defined asFκ(c) = [f(d) | d ∈ Nκ(c)].
Finally, for any setC, we define|C| as the cardinality ofC. Table 1 lists the notation and commonly used symbols for the
paper.

2.2 Data Description

The spectral datasets (consisting of both MRI and MRS data) used for the study were collected during the ACRIN multi-
site trial (http : //www.acrin.org/6659 protocol.html). All the MRS and MRI studies were 1.5 Tesla. The MRI studies
were axial T2 images obtained from 19 patients. The 19 3D studies comprised a total of 148 image sections. These sections
correspond to either the base, midgland, or apex of the prostate. Three distinct 2D ASM models were constructed, one
each for the base, midgland, and apex. The ground truth was determined by manual outlining of the prostate border on
each section by an expert radiologist.



Table 1. List of notation and symbols used.
Symbol Description Symbol Description

C MRI scene Ĉ MRS scene
C Set of pixel coordinates inC Ĉ Set of metavoxel coordinates in̂C
c A pixel in C ĉ A metavoxel inĈ

f(c) Intensity value atc F̂ (ĉ) Spectral content at̂c
Nκ(c) κ-neighborhood nearc Fκ(c) Set of intensity values for∀d ∈ Nκ(c)

X Set of landmark points, whereX ⊂ C T (X) Affine transformationsT applied toX

X̃ Set of goal points wherẽX ⊂ C b Variable controlling the ASM shape
gm Expected gray values for themth landmark point K Number of training images

2.3 Brief Outline of Methods

Figure 1 illustrates the modules and the pathways comprising our automated segmentation system. The first step consists
of performing non-linear dimensionality reduction (graphembedding) on spectrâF (ĉ) to embed these spectra non-linearly
in a lower dimensional space. The embedded spectra, represented now as their corresponding dominant Eigenvectors, are
clustered into clusters corresponding to informative (within or around the prostate) and non-informative spectra (back-
ground spectra lying outside the prostate). The spectra in the dominant, non-informative cluster are eliminated. This
process repeats until a bounding box containing the prostate is obtained. At this point, the set of prostate training images
are manually landmarked, from which the shape and intensityinformation is obtained. This landmarking can be done
off-line, and only needs to be done once to construct a trained ASM model consisting of both shape and intensity infor-
mation. The mean shape is then transformed to the bounding box previously obtained from the MRS data, which serves
as the landmark points for the first iteration. Then, for eachiteration, a technique maximizing MI is performed to find
pixels on the prostate border. Finally, these landmarks areweighted, and the shape is updated to best fit the points on the
border, yielding the next iteration’s landmark points. Theprocess is repeated until convergence is obtained, resulting in a
segmentation of the prostate.

Input MRS 
spectra

Manifold 
learning to 

embed spectra

Unsupervised 
clustering of 

spectra in lower 
dimension

Identify and 
eliminate dominant 

non-informative 
cluster

Obtain MRS 
Bounding 
Rectangle

Overlay Mean Shape

Use mutual information 
to find prostate border

Update the 
shape

Train Shape Model and Expected Gray Values

Figure 1. Flowchart for segmentation algorithm, with the MRS module shown on the left and the ASM module shown on the right.

3. MRS METHODOLOGY

3.1 Non-Linear Dimensionality Reduction via Graph Embedding

The spectraF̂ (ĉ), for ĉ ∈ Ĉ, lie in a 256 dimensional space. Hence, our aim is to find an embedding vectorG(ĉ) for
∀ĉ ∈ Ĉ, and its associated classω (informative or non-informative) such that if the distances between elements ofω are
well preserved in the lower dimensional space. Hence if metavoxelsĉ, d̂ ∈ Ĉ both belong to classω, then‖ G(ĉ)−G(d̂) ‖
should be small. To compute the optimal embedding, we first define a matrixW ∈ ℜ|Ĉ|×|Ĉ| representing the similarity
between all objects in̂C. For∀ĉ, d̂ ∈ Ĉ, W is defined as

W (L(ĉ), L(d̂)) = e−‖F̂ (ĉ)−F̂ (d̂)‖ (1)



whereL(ĉ) represents a unique index position ofĉ = (x, y, z) derived from itsx, y, z coordinates in 3D space. The
embedding vectorG is obtained from the maximization of the function

EW (G) = 2γ
GT (D − W )G

GT DG
, (2)

whereγ = |Ĉ| − 1. In addition,D is a diagonal matrix where for∀ĉ ∈ Ĉ, the diagonal element(L(ĉ), L(ĉ)) is defined
asD(L(ĉ), L(ĉ)) =

∑

d̂∈Ĉ
W (L(ĉ), L(d̂)). The embedding space is defined by the Eigenvectors corresponding to the

smallestβ Eigenvalues of(D − W )G = λDG. A matrix M ∈ ℜ|Ĉ|×β of the firstβ Eigenvectors is constructed, and
for ∀ĉ ∈ Ĉ, G(ĉ) is defined as rowL(ĉ) of M . G(ĉ) is therefore a vector consisting of element numberL(ĉ) from each
of the firstβ Eigenvectors, which represents theβ-dimensional Cartesian coordinates. The graph embedding algorithm is
summarized below.

Algorithm GraphEmbedding

Input: Ĉ, F̂ (ĉ) for ∀ĉ ∈ Ĉ

Output: G(ĉ) for ∀ĉ ∈ Ĉ
begin

0. Define a unique element mappingL, where1 ≤ L(ĉ) ≤ |Ĉ| andL(ĉ) 6= L(d̂) for ∀ĉ, d̂ ∈ Ĉ;
1. Define a|Ĉ| × |Ĉ| matrixW , whereW (L(ĉ), L(d̂)) = e−‖F̂ (ĉ)−F̂ (d̂)‖ for ∀ĉ, d̂ ∈ Ĉ;
2. Define a|Ĉ| × |Ĉ| matrix D, where each diagonal element has a value ofD(L(ĉ), L(ĉ)) =

∑

d̂∈Ĉ
W (L(ĉ), L(d̂));

3. Calculate the Eigenvalues and Eigenvectors of(D − W )G = λDG;
4. Construct a|Ĉ| × β matrixM of the firstβ Eigenvectors, where each column is an Eigenvector;
5. For∀ĉ ∈ Ĉ, define the vectorG(ĉ) as rowL(ĉ) of M ;

end
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Figure 2. Spectral grids for a single slice within̂C are shown superimposed on the T2 MRI section for (a)Ĉ0, (b) Ĉ1, and (c)Ĉ2. Note
that the size of the grid reduces from16 × 16 metavoxels (a) to6 × 3 metavoxels (c) by elimination of non-informative spectra on the
16 × 16 grid. Note the white box (shown with dashed lines) in (c), representing the rectangular ROI centered on the prostate. Also note
the embedding plots of (d)̂C0, (e) Ĉ1, and (f)Ĉ2 clustered each into the 3 clustersV 1

h , V 2

h , andV 3

h in lower dimensional space.



3.2 Hierarchical Cascade to Prune Non-informative Spectra
At each iterationh, a subset of metavoxelŝCh ⊂ Ĉ is obtained by eliminating the non-informative spectra. The metavoxels
ĉ ∈ Ĉh are aggregated into clustersV 1

h , V 2
h , V 3

h by applyingk-means clustering to all̂c ∈ Ĉh in the low dimensional
embeddingGh(ĉ). Initially, most of the locationŝc ∈ Ĉh correspond to zero padded or non informative spectra. Therefore,
while the unsupervised clustering results in 3 clusters, the dominant cluster (the cluster with the most number of elements)
is non-informative and is eliminated. Figure 2(a) represents a 16×16 MRS grid, superimposed on the corresponding T2
MR image. After the first iteration, the outer voxels containing zero padded spectra are removed, and the grid becomes
an 8×16 grid (Fig. 2(b)). The scheme is recursed until a final set ofmetavoxelsĈH is obtaining, serving as an ROI
containing the prostate (Fig. 2(c)). WhileH can represent a constant number of iterations, the MR data actually contains
the information about the size of the prostate, thereby allowing the desired value of|ĈH | to be known beforehand. The
algorithm below describes precisely how our methodology works. Also note that while it is presented with a constantH
as an input, it is readily extendable to include prior information about the desired value of|ĈH |.

Algorithm HierarclustMRSprostate

Input: F̂ (ĉ) for ∀ĉ ∈ Ĉ, H

Output: ĈH

begin
0. InitializeĈ0 = Ĉ;
1. for h = 0 to (H − 1) do
2. CalculateGh(ĉ) for ∀ĉ ∈ Ĉh asGh = GraphEmbedding(Ĉh, F̂ );
3. Apply k-means clustering onGh(ĉ) for ∀ĉ ∈ Ĉ to obtain clustersV 1

h , V 2
h , V 3

h ;
4. Identify largest clusterV max

h ;
5. Create set̂Ch+1 ⊂ Ĉh by eliminating allĉ ∈ V max

h from Ĉh;
6.endfor

end

4. ASM METHODOLOGY

4.1 Training the Shape Model and Expected Gray Values
Step 1: The training phase begins by using training images of oblique axial slices and manually selectingM landmarks
on the prostate boundary. The set ofK training images is denoted asSt = {Cα | α ∈ {1, ..., K}}. The apex and the
2 posterolateral-most points on the prostate are landmarked, and the remaining(M − 3) landmarks are equally spaced
between these landmarks. Therefore, each training imageCα ∈ St has a corresponding set of landmarksX

α ⊂ Cα, where
X

α = {cα
m | m ∈ {1, ..., M}}, and wherecα

m = (xα
m, yα

m) denotes the coordinates of themth landmark point inCα.
Step 2: These shapes are aligned using a modified Procrustes analysis, as described in [14]. Figures 3(a) and 3(b) show

the training landmark points before and after alignment. Once the training shapes have been aligned, the mean shapeX

is defined asX = {cm | m ∈ {1, ..., M}}, wherecm = (xm, ym) andxm = 1
K

∑

α xα
m andym = 1

K

∑

α yα
m. Then,

principal component analysis is performed as per the technique described in [12], so that any valid prostate shapeX can
be represented as

X = T
(

X + P · b
)

(3)

whereT is an affine transformation mapping,b is the variable controlling the shape, andP is a matrix with each column
representing an Eigenvector. Out of theM Eigenvectors, only the firstz are needed to explain most (98%) of the training

variation, where ifλr is therth Eigenvalue,z is as small as possible such that(
∑z

r=1 λr) ≥
(

0.98 · ∑M

r=1 λr

)

. Therefore,

|b| = z, andP is a matrix consisting of only the firstz Eigenvectors. In our experiments, we represented valid prostate
shapes as vectorb of length 18, with each element inb constrained between±2.5 standard deviations, with one standard
deviation for therth element inb given as

√
λr.

Step 3: The mean gray values must now be calculated for each landmarkpoint, which will represent the expected gray
values for the prostate border. First, we take theκ-neighborhood centered on eachcα

m asNκ(cα
m), whereα ∈ {1, ..., K}.

Then, for∀dα
u ∈ Nκ(cα

m), we definef(du) = 1
K

∑

α f(dα
u), whereu ∈ {1, ..., |Nκ(cm)|} Finally, the expected gray

values are defined asgm = Fκ(cm) whereFκ(cm) =
[

f(du) | u ∈ {1, ..., |Nκ(cm)|}
]

. This concludes the off-line
training phase of the segmentation system, with the variablesX,P, andgm, m ∈ {1, ..., M} comprising a trained ASM
model.
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Figure 3. Training landmark points in (a), aligned in (b) with X shown in black.X, encompassed by the smallest possible rectangle, is
shown in the top left corner of (c). In (d),X is seen highlighted on the MRS bounding box after being transformed to yield the initial
landmarksX1.

4.2 Initializing the ASM and Using Mutual Information to Find the Prostate Border

At this point, we define a new image to search for the prostate as the sceneC = (C, f) whereC /∈ St. The very first step
of the system is to initialize the landmarks for the first iteration,X1 (whereX

1 ⊂ C). To do this, the smallest rectangle
containingX, shown in Fig. 3(c), has its corners aligned to the corners ofthe bounding box obtained from the MRS
data. The scaling and translation transformationsT used to align the two rectangles are applied toX, yielding the initial
landmark points asX1 = T (X). Figure 3(d) showsX1 initialized to the MRS rectangle.

A set of points presumed to lie on the prostate border must nowbe calculated. For thenth iteration, the current
landmark pointscn

m, m ∈ {1, ..., M} are denoted by the setXn and the set of points̃cn
m, m ∈ {1, ..., M}} presumed to

lie on the prostate border is denoted by the setX̃
n. The pixels surrounding eachcn

m, denoted asNυ(cn
m), are all possible

locations for the prostate border. For∀cj ∈ Nυ(cn
m), a set of nearby intensity valuesFκ(cj) is compared withgm using

mutual information (MI). One common way to calculate a normalized MI value is by calculating the Entropy Correlation
Coefficient (ECC)21 between 2 sets of values. Ifa andb are 2 sets of intensity values, we denote the normalized MI value
between them asECC(a, b). The locationcj with the highest mutual information (MI) value betweenFκ(cj) andgm is
denoted as̃cn

m. Therefore, we now define the set of goal points asX̃
n = {c̃n

m | m ∈ {1, ..., M}} where

c̃n
m = argmax

cj

(ECC(Fκ(cj), gm)) (4)

andcj ∈ Nυ(cn
m). Figure 4(a) shows the MI values for eachcj ∈ Nυ(cn

m) as pixel intensities, with the brightest pixel
representing̃cn

m. Ideally,c̃n
m would lie exactly on the border of the prostate. It is important to note that the number of pixels

sampled (|Fκ| and|gm|) need not necessarily equal the number of pixels to search (|Nυ|). In fact, the windows don’t even
have to be the shame shape, although for our purposes we consistently used rectangles, as seen in Fig. 4(a).

4.3 Updating the Shape

X
n must now be deformed tõXn. At this point we introduce a weighting scheme for updating the shape. The vector of

weights is denoted asΓn = {Γn
m | m ∈ {1, ..., M}}, where eachΓn

m is a weight associated with the landmark pointcn
m.

First, the MI values for each goal pointc̃n
m ∈ X̃

n are compared to one another. The goal point with the highest MI value
betweenFκ(c̃n

m) andgm is given a weight of 1, the goal point with the lowest MI value is given a weight of 0, and the
remaining points are linearly rescaled to lie between 0 and 1. The reasoning is that a high normalized MI value indicates
that the intensity values surrounding the goal point are highly predictive of the mean of the training data, and should be
weighted heavily. After the first iteration, each MI weight value is multiplied by an ‘outlier weight,’ which is based on how
well the shape model was able to deform to the goal points during the previous iteration. Each MI weight value is multiplied
by a number between 0 and 1, which is calculated as a linear rescaling of‖ c̃n−1

m − cn
m ‖−1

. This product is the final weight
for each landmark point,Γn

m. Figure 4(b) shows several outlier weights wherec̃n−1
m are shown as white diamonds and all

cn
m are indicated by the white line. Most ASM systems don’t allowthe current iteration to deform completely to the goal

points. Cootes et al., for example, limit the number of pixels thatXn can move to between 0 and 4 pixels per iteration.22

We have chosen instead to linearly rescaleΓ so thatminm (Γ) = 0.25 andmaxm (Γ) = 0.75. This will prevent the shape
model from completely fitting the goal points, as each landmark point can only possibly move between 25% and 75% the
distance to its corresponding goal point. These numbers don’t necessarily have to be 0.25 and 0.75, but we felt these were
reasonable constraints. Next, the landmarksX

n are aligned to the goal points̃Xn using affine transformations. This is
done using a weighted Procrustes analysis,14 with the weight for themth landmark defined asΓn

m, resulting in an affine



(a) (b)

Figure 4. (a) Search areaNυ(cn
m) shown in the gray rectangle with the MI values for eachcj ∈ Nυ(cn

m) shown as pixel intensities. A
brighter intensity value indicates a higher MI value between Fκ(cj) andgm. Also shown is the point with the highest MI value,c̃n

m.
Shown in (b) are outlier weights withXn shown as the white line and̃Xn−1 shown as white diamonds. Note that when the shape has
deformed very closely to a goal point, the weighting is a 1 andwhen a goal point is too much of an outlier, the weighting is a 0.

transformation mappingT . However, only using a global affine transformation is not enough to optimally reach the goal
points, which is the reason statistical shape models are generated. As described in [12], the shape parameter for thenth

iteration is defined as

b
n =

{

∅ if n = 0,

b
n−1 + P

−1 · dx if n > 0,
(5)

wheredx = {dxm | m ∈ {1, ..., M}} anddxm =‖ c̃n
m−T (cn

m) ‖ ·Γm, which allows the weights to be taken into account
when updating the shape. Finally, the affine transformationsT are applied to this new shape, yielding the next iteration’s
landmarks as

X
n+1 = T (X + P · bn). (6)

The system then repeats searching for new goal points and updating the shape, until the mean Euclidean distance between
X

n andX
n+1 is less than 0.2 pixels, at which time convergence is assumed.

4.4 Evaluation Methods

Once the final landmarks have been determined, this shape is compared to a manually outlined expert segmentation. The
area based metrics used to evaluate the segmentation systemare positive predictive value (PPV), specificity, sensitivity,
and global overlap coefficient, with values closer to 1 indicating better results.3, 18 The edge based metric used to evaluate
the system are mean absolute distance (MAD) and Hausdorff distance, which are given in units of pixels with values closer
to 0 indicating better results.23 To evaluate the system, the optimal parameters are first computed, which is followed by a
randomized cross validation. To perform the cross validation, we let the variableq represents the number of images to test
with, andP represent the total number of images in a certain group (either apex, midgland, or base). For each group, we
randomly selectq images to test with, and generate an ASM model with (P − q) images. Averaging the metric results for
thoseq images gives a set of mean values (µ) for sensitivity, specificity, overlap, PPV, MAD, and Hausdorff distance. We
repeat this 50 times and report the mean metric values (µ’s), and the standard deviations (σ’s) over the 50 iterations.

4.5 Parameter Selection and Sensitivity Analysis

To evaluate the system, the optimal parameter values must becomputed. First, the search area (Nυ) was set as a 15×3
rectangle, centered on the current landmark point and rotated to face in the normal direction of the shape at that point, as
shown in Fig. 4(a). This was assumed to be large enough to encompass the prostate border given a decent initialization,
without compromising computational costs. Using this search size, the best sampling sizes (Nκ) were determined for each
group of images. For sampling, we used rectangles rotated inthe same direction as the search rectangles. The parameters
that were tested were the sampling rectangle’s height and width, each varied between 1 and 50 pixels. The best sampling
rectangle sizes were determined to be 7×13, 37×39, and 33×31 pixels for the base, midgland, and apex respectively.



After performing the repeated segmentations with different sampling lengths and widths, we compared how many different
values gave at least a minimum metric value, shown in Fig. 5. For example, 100% of the sampling sizes tested (y-axis)
achieved sensitivity values of at least 0.60 (x-axis), while only 3% of the sampling sizes (y-axis) achieved sensitivity values
of at least 0.88 (x-axis).

Once the optimal parameters were determined, we evaluated the importance of a correct initialization by randomly
changing the initialization bounding box. We chose random ROIs to initialize the ASM system, and compared these to the
ROIs obtained from the MRS data. Figure 6 shows the effects ofchanging the initialization, where the distance between
the corners of the MRS ROI and the random ROI is plotted on the x-axes. The downward slopes in Fig. 6 show that
the segmentation becomes worse as the initial ROI is moved further away from the MRS box, suggesting that a proper
initialization is vital for an accurate segmentation, and that the spectral clustering of MRS data can provide this required
initialization.
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Figure 5. A graph of how many different sampling sizes (y axis) achieved a certain metric value (x axis).
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Figure 6. Effect of changing the initialization where the x-axis represents the distance (in pixels) between the corners of the initialization
used and the corners of the MRS box. The y-axis represents thesensitivity values in (a), the overlap values in (b), the PPVvalues in (c),
and the MAD values in (d). Note the downward slopes in (a)-(d), which suggest that on average the segmentation becomes worse as the
initialization is moved away from the MRS box.

5. RESULTS AND DISCUSSION

5.1 Qualitative Results

Several qualitative results for the MRS initialization areshown in Fig. 7. In each of these images, the final bounding box
from the MRS spectral clustering scheme is shown in white, overlaid on the original MR images. In all of the results,
the bounding box obtained from MRS data accurately encompassed the prostate, validating the use of spectral clustering
on MRS data for initializing a segmentation system. Qualitative results for the resulting segmentation are shown in Fig.
8. In these images, the ground truth (as determined by an expert) are shown in black, and the results from the automatic
segmentation system are shown in white. The prostate imagesshown in Fig. 7 don’t correspond to the prostate images in
Fig. 8, but in both figures there is at least one image from the base, midgland, and apex.



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. (a) - (h) show the 8 different initialization bounding boxes obtained from the MRS data in white, overlaid on theoriginal MR
images. Note that in each case the bounding box contains the prostate.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. (a) - (h) show qualitative results with ground truth in black, and results from automatic segmentation of the prostate in white.

5.2 Quantitative Results

Table 2 shows the results from the randomized cross validation described in Section 4.4. We also calculated a confidence
interval for the mean values, which is derived from the Student’s t-distribution and the standard error. So for any of the
metric values, after repeating 50 times, the 99% confidence interval is given asµ±0.3787σ. The images from the base had
the best results, yielding sensitivity, specificity, overlap, and PPV values as high as 0.89, 0.86, 0.83, and 0.92 respectively,
and MAD and Hausdorff distance as low as 2.6 and 8.2 pixels respectively. The apex, however, yielded the worst results
due to high variability in appearance between images, as well as the close proximity to surrounding tissues. Also, sinceq
represents the number of images to test with (q ∈ {3, 5, 10}), a higher value ofq indicates less images to train with, which
was shown to slightly decrease accuracy for each group. Finally, the PPV values were consistently the highest values,
suggesting that the segmentations tended to have minimal false positive area.



Table 2. Results over 50 trials, where q represents the number of images to leave and out and test with for each trial,µ represents the
mean metric value over all 50 trials, andσ represents the standard deviation over all 50 trials.

Group q
Sensitivity Specificity Overlap PPV MAD Hausdorff
µ σ µ σ µ σ µ σ µ σ µ σ

Base
3 0.892 0.048 0.863 0.056 0.826 0.036 0.924 0.035 2.625 0.599 8.192 1.912
5 0.884 0.052 0.852 0.050 0.818 0.047 0.917 0.044 2.624 0.551 8.298 1.727
10 0.883 0.031 0.855 0.032 0.815 0.028 0.920 0.024 2.804 0.371 8.791 1.074

Midgland
3 0.846 0.073 0.863 0.061 0.785 0.062 0.925 0.037 3.467 1.222 9.594 2.597
5 0.872 0.038 0.864 0.045 0.810 0.034 0.926 0.029 3.012 0.641 9.008 1.646
10 0.851 0.030 0.862 0.030 0.789 0.027 0.924 0.019 3.367 0.543 9.556 1.451

Apex
3 0.847 0.075 0.817 0.079 0.749 0.064 0.881 0.067 3.821 1.085 11.06 3.106
5 0.824 0.056 0.823 0.059 0.733 0.050 0.887 0.046 3.927 0.758 11.06 1.863
10 0.833 0.050 0.810 0.049 0.730 0.037 0.876 0.039 4.004 0.581 11.24 1.514

6. CONCLUDING REMARKS

In this paper, we have presented a scheme that integrates dimensionality reduction and hierarchical clustering on MRS data
to yield a fully automatic and accurate ASM based prostate segmentation method onin vivo MR data. Performing spectral
clustering on MRS data to obtain an initial ROI is a significant novel aspect of our work, as the method is fully automated
and does not require any manual initialization. In addition, we have also shown how MI could be successfully used as part
of an ASM system, providing yet another novel aspect to our scheme. Finally, we have performed an exhaustive evaluation
to demonstrate the accuracy, efficiency, and robustness of our system. Comparison of our segmentation system with other
prostate segmentation schemes show that our system performs at least as well, if not better, than other systems. Klein et
al.9 have reported a mean overlap of 0.82, and Zhu et al.15 have overlap coefficients ranging from about 0.15 to about
0.85, while our mean overlap coefficients range from 0.730 to0.826. Costa et al.10 result in mean sensitivity and PPV
values of 0.75 and 0.80 respectively for the prostate, whilewe achieved mean sensitivity and PPV values of 0.892 and
0.926 respectively.

However, there are certain cases in which our automatic segmentation performs poorly (Fig. 9). Figure 9(a) shows
the poor initialization resulting in the segmentation shown in Fig. 9(b). Figure 9(c) shows a proper initialization, which
still failed because of the lack of a clear prostate edge at the bottom right corner of the prostate (Fig. 9(d)). Limitations
include high variability in prostate appearance between patients, as well as problems such as unclear edges, or edges that
are simply not predictive of one another. Future work will attempt to overcome these limitations.

(a) (b) (c) (d)

Figure 9. Two different initializations are shown in (a) and(c), with their respective resulting segmentations shown in (b) and (d). In (a)
and (c), the rectangular bounding box, calculated from the MRS data, is shown as a white rectangle. In (b) and (d), the ground truth is
shown in black, and the results from the automatic segmentation is shown in white. Note that the MR images shown in (b) and (d) are
the same images shown in (a) and (c) respectively.
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