
Lattice THE MACHINE
LEARNING JOURNAL

VOLUME-2, ISSUE-1 (January - March 2021)

AN INTERNATIONAL PEER REVIEWED OPEN ACCESS JOURNAL
IN DATA SCIENCE & MACHINE LEARNING

www.adasci.org/lattice

About the JournalIndex

Ethics Concerns (Plagiarism, Misconduct, etc.)

The Editorial Board

Scope of Lattice

Copyright Policy

05

06

07

08

09

Pneumothorax Detection and Classification

on Chest Radiographs using Artificial

Intelligence

Solution Approach to Resolve Vehicle Routing

Problem using Deep Reinforcement Learning

Efficient and Optimal Deep Learning Inference

for Computer Vision Applications

Classification of different plant leaf diseases

using multiple convolutional neural network and

image pre-processing

Classification of Weed Species Using Deep

Learning

Machine learning approach to predict

patient position for preventing bedsores

A Noninvasive model to detect Dengue based

on symptoms using Artificial Intelligence and

Machine Learning

10

16

24

31

36

44

50

PUBLISHED BY:

BANGALORE, INDIA

ONLINE CONTENTS AVAILABLE: EVERY
QUARTER ON www.adasci.org/lattice

4

Lattice

Lattice is an international peer-
reviewed and refereed journal on
machine learning. The journal is hosted
and managed by the Association of
Data Scientists (ADaSci). Lattice intends
to publish high-quality research articles
of the researchers and professionals
working in the field of data science

and machine learning. All the articles
published by Lattice have to pass
an in-depth doubly blinded review
process before publishing. The journal
maintains a list of reviewers and
editors all belonging to the prestigious
institutions/organizations that take part
in the functioning of the journal

About THE JOURNAL

Lattice

5

The Association of Data Scientists
was formed with the intent to
develop, disseminate and implement
knowledge, basic and applied research
and technologies in analytics, decision-
making, and management. Lattice,
hosted under the flagship of ADaSci
follows the same vision and aims to
provide a platform for sharing and
exchanging the knowledge and

research outcomes in the field of data
science and machine learning. Lattice
publishes scholarly articles that come
under the aim and scope of the journal.
The article submitted for consideration
must consist of new concepts, theories,
methodologies, and applications that
are unpublished. It considers articles
from the following key areas of data
science and machine learning.

Scope OF LATTICE

Lattice

6

The publication of an article in Lattice
is considered as a building block in
the development of a coherent and
respected network of knowledge. The
publication is a direct reflection of the
quality of the contribution of an author
and the organization that supports
them. It is, therefore, necessary
to adhere to certain standards of
expected ethical behaviour. The
important points that must be
considered before submission are given
below.

AUTHORSHIP: Authorship should be
limited to those persons only who
have made a significant contribution
to the conception, design, execution,
or interpretation of the reported study.
Transparency about the contributions
of authors is encouraged.

ORIGINALITY AND PLAGIARISM: The
authors should ensure that they have
written entirely original works, and if

the authors have used the work and/
or words of others, that this has been
cited or quoted appropriately..

DATA ACCESS AND RETENTION:
Authors may be required to provide the
raw data in connection with a paper
for editorial review, and should be
prepared to provide public access to
such data.

ACKNOWLEDGEMENT OF SOURCES:
Proper acknowledgement of the work
of others must always be given. Any
funding received for the research must
also be acknowledged.

DISCLOSURE AND CONFLICTS OF
INTEREST: All submissions must
include disclosure of all relationships
with any member of the Lattice’s
editorial team that could be viewed
as presenting a potential conflict of
interest.

Ethics Concerns (PLAGIARISM,
MISCONDUCT, ETC.)

Published by:

www.adasci.org

Lattice

7

The Lattice requires the transfer of
copyrights from the author to the
journal. On successful acceptance
of every paper to the Lattice, the
authors are required to submit a
copyright transfer form. The copyright
is transferred from the author to
the publisher that is meant for the
contents in the article. The algorithms
and research work is always the
intellectual property of the researcher
or writer. Consider the case that in
future, the author claims that ADaSci
has published my work without my
knowledge and consent or the author
publishes the work with any other
publisher and the other publisher
claims that ADaSci has published its
contents by violating the copyright
rules.

The copyright aims to ensure that the
researcher has published his work with
the publisher to whom the researcher
has transferred the copyrights. Now the
publisher is the owner of the contents
and the publisher of the intellectual
property that actually belongs to
the researcher. After getting the
copyrights transferred from the author,
the publisher becomes authorised to
publish the contents on his publication
mediums such as website, journal,
video series etc. The copyright also
ensures that the same content is not
being published by the author with any
other publication without the consent
of the current publisher. It also ensures
that no other person can publish the
contents which are already published
where the publisher has the copyrights
for the same.

Copyright POLICY

The Association of Data Scientists
(ADaSci) believes that the
manuscripts submitted to Lattice
by the corresponding authors are
their original work as the authors
have acknowledged the same while
transferring the copyright to the

journal. In future, if it is found that
the content has been published with
any other publication without the
knowledge of ADaSci, the Lattice will
discontinue the publication of that
manuscript from the website.

Disclaimer

Lattice

8

(B.E., Visiting Student - MIT Media Lab)
Associate Director, Association of Data Scientists, Bangalore, Karnataka

KRISHNA RASTOGI
EDITOR

DR. KRISHNENDU SARKAR
EDITOR

(Ph.D., M.Tech, B.Tech)
Professor, Chief and Director at NSHM Life Skills School, NSHM
Knowledge Campus, Kolkata, West Bengal, India

(Ph.D - Universidad de San Miguel, Mexico, MBA - Universidad Isabel,
Canada), Professor and Dean at Woxsen University, Hyderabad, Telangana

DR. RAUL VILLAMARIN
RODRIGUEZ
EDITOR

DR. MARIA SINGSON
EDITOR

(Ph.D. - University of California, B.A. - University of Southern California)
Faculty at Rutgers Business School Executive Education, Piscataway, NJ,
USA, General Manager - Data Science at Mastech InfoTrellis, Co-Founder
at Fichu Tirages, Member of Board of Directors at twoMS.co, Palm Beach,
Florida, USA

DR.DIPYAMAN SANYAL (CFA)
EDITOR

(Ph.D. - JNU Delhi, M.S. - University of Texas, Dallas)
Faculty of Data Science at Northwestern University, Chicago, Illinois, USA
Co-Founder and CEO, dono Consulting

DR. PALAMADAI KRISHNAN
VISHWANATHAN
EDITOR

(Ph.D., MBA, MSc)
Professor at Great Lakes Institute of Management, Chennai, Tamilnadu

The Editorial Board

(Ph.D. - University of California, M.S. - Yonsei University, B.S. - Yonsei
University), Vice President and Chief Analytics Officer at Zebit, San
Diego, California, USA

DR. SUNHYOUNG HAN
EDITOR

DR. SEVERENCE
MACLAUGHLIN
EDITOR

(Ph.D. - University of Adelaide, B.S. - Cornell University)
Chief of Intelligence at Capgemini Invent, Executive Board Member at
DeLorean Artificial Intelligence, Adjunct Research Fellow, University of
South Australia, Greater New York City, USA

DR. FARSHAD KHEIRI
EDITOR

(Ph.D. - University of Albama, M.Sc. - University of Alabama, B.A.Sc. -
Isfahan University of Technology), Head of AI and Data Science at 55
Foundry, Manhattan Beach, California, USA

BAHARAK SOLTANIAN
EDITOR

(Ph.D. - Tampere University of Technology, M.S. - Tampere University of
Technology, B.Sc. - Sharif University of Technology), Head of Computer
Vision and Sensor Fusion at Stealth Mode Startup, Mountain View,
California, USA

(Ph.D. - Middlesex University, M.Sc - University College of Dublin, B.Sc -
National University of Singapore)
Executive Director - Stealth Mode Startup Company, Technology
Advisor, Board of Advisors at BigTapp Private Limited, Singapore

DR. MURPHY CHOY
EDITOR

Lattice

9

Lattice

10

Pneumothorax Detection and Classification on
Chest Radiographs using Artificial Intelligence

Tejas Haritsa V K*
AI Engineer

Telerad Tech Pvt. Ltd.
Bengaluru, India

tejastejatej@gmail.com

Dr. Arjun Kalyanpur
 CEO and Chief Radiologist
Teleradiology Solutions and

Image Core Lab
Bengaluru, India

arjun.kalyanpur@telradsol.com

Naveen Raju S G*
AI Engineer

Telerad Tech Pvt. Ltd.
Bengaluru, India

naveenraju100@gmail.com

Dr. Pallavi Rao
Senior Scientific Officer and

Consultant Radiologist
Image Core Lab
Bengaluru, India

 pallavi.rao@imagecorelab.com

Kishore Rajendra
AI Engineer

Telerad Tech Pvt. Ltd.
Bengaluru, India

 kishorerajendra000@gmail.com

Abstract:

In recent years, Computer Aided Diagnosis (CAD) systems
have been designed for the detection of lung space anomalies.
Pneumothorax is an abnormal collection of air in the pleural
space between the lung and the chest wall that can result in
partial or complete lung collapse [1]. This is a medical
emergency in which quick detection and timely intervention can
be life-saving. Pneumothorax detection on chest radiographs is
important & may be facilitated with the help of image
processing and deep learning algorithms. In this study we aim
to evaluate the performances of two artificial intelligence
systems in detection of pneumothorax on chest radiographs. The
AI system was trained on open source datasets obtained from
from the US National Institutes of Health (NIH) [2], Society for
Imaging Informatics in Medicine (SIIM) [3][4] & private
datasets. Two unique approaches were used, one involved
processing high-resolution complete images of size 1024x1024px
and other involved feeding medium resolution images in
portions (segments), each of size 448x448px. The trained AI
systems was trained with binary mask as ground truth evaluated
by a team of radiologists where, the segmental approach yielded
a dice coefficient of 0.72, sensitivity of 0.986, specificity of 0.95,
accuracy of 0.9683 and with Area Under Receiver Operating
Characteristic Curve (AUROC) of 0.95, while the full image
approach yielded an accuracy of 0.9417, dice coefficient of 0.865,
sensitivity of 0.9084, specificity of 0.9510 with AUROC of 0.93.

Keywords:

Computer Aided Diagnosis (CAD) systems, Image Processing,
Artificial Intelligence (AI) System, Deep Learning, Chest
Radiographs, US National Institutes of Health (NIH), The Society
for Imaging Informatics in Medicine (SIIM), Two Unique
approaches, Segmental approach, Full Image approach,
RetinaNet, ResNet, U-Net.

I. INTRODUCTION
A pneumothorax is an abnormal collection of air in the

pleural space between the lung and the chest wall [1]. This air
pushes on the outside of the lung, causing it to collapse. A
pneumothorax can be caused by a blunt or penetrating chest
injury, certain medical procedures, or from underlying lung
disease, typically emphysema. Depending on its size,
pneumothorax can result in complete lung collapse or collapse
of only a portion of the lung.

Occasionally it may occur for no obvious reason (idiopathic).
Pneumothorax can potentially be life-threatening and is
considered to represent a critical finding in Emergency
Radiology (ER), requiring immediate reporting to the treating
physician to ensure immediate medical attention. Hence,
Pneumothorax detection is of critical importance in clinical
care. Pneumothorax may be detected with the help of image
processing and deep learning algorithms. If utilized
effectively, deep learning techniques can assist radiologists
with quick detection, segmentation, classification and
quantification of pneumothorax. In this paper, we evaluate
two deep learning architectures for the detection and
segmentation of pneumothorax regions on chest radiograph
images. The AI system detects regions of pneumothorax in a
chest radiograph and may assist the radiologist to review on
priority the cases that contain a pneumothorax and thus
facilitate early management of patients.

II. DATASET AND METHODS

A. DATASET
The data set was curated from an open source repository

from the US National Institutes of Health (NIH) [2], The
Society for Imaging Informatics in Medicine (SIIM) [3][4] &
private data sets and repositories, totaling 18,252 chest
radiographs of varying quality. Which was approved by our
Institutional Ethics Committee (IEC) at Image Core Lab (ICL).
A total of 12,954 chest radiographs comprising 3,576 positive,
9,378 negative were obtained from Society for Imaging
Informatics in Medicine (SIIM) [3][4] and a total of 5,298
chest radiographs comprising 2,146 positive, 3,152 negative
were obtained from private data repositories each of
dimensions 1024x1024. This was used to train the AI system
excluding 3,720 radiographs which was used only for
validation during the training phase. The AI system was later
tested on a portion of the data set which was initially excluded
from both training and validation sets and consisted of a batch
of chest radiographs numbering 1,578. An initial analysis of
the data set revealed that the mean age of patients was 48 years
with a male-female ratio of 52:48.

B. METHODS
1) Full Image Approach
In this approach high resolution images were trained along

with their respective binary masks as ground truths. The U-
Net architecture [6] has been used for segmentation of several * Equal Contributors

LatticePNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

Lattice

11

PNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

abnormalities such as “Intracranial Hemorrhage Segmentation
Using Deep Convolutional Model” [7], “The 2ST-UNet for
Pneumothorax segmentation in chest radiographs using
Residual Network with 34 layers (ResNet34) as a backbone
for U-Net” [8], “Multi-Path Recurrent U-Net Segmentation of
Retinal Fundus Image” [9], “MRI Breast Tumor
Segmentation Using Different Encoder and Decoder CNN
Architectures” [10] and has been proved to give better
accuracy. Observing its versatility in the above scenarios, U-
Net architecture [6] was chosen for this problem statement.

2) Segmental Approach
As pneumothorax is an abnormality which appears as a

lucency (variation in the exposure), Image augmentation
techniques were used to enhance the visibility of the regions
of pneumothorax. Adjustments to gamma values of the image
in particular played an important role in enhancing the
visibility of the pneumothorax boundaries. For the Segmental
approach each chest radiograph was sliced into nine image
segments as shown in Fig. 2.2.1 and Fig.2.2.2.

The segmented images were classified into positive
segments and negative segments based on the ground truth
binary masks [5]. The AI system was then trained on the
segmented chest radiographs in 3 folds (Here, a fold refers to
a cycle of training). The 1st fold of training was carried out on
only positive segments of pneumothorax for 10 epochs, The
2nd fold of training was carried out with a mixture of positive
and negative pneumothorax segments with a ratio of 0.8:0.2
for 10 epochs, The 3rd fold of training was carried out on a
mixture of positive and negative pneumothorax segments with
a ratio of 0.4:0.6 for 10 epochs.

This particular approach was used in training to ensure that
the model picked up the key regions of pneumothorax, so that
it first gets skewed towards high sensitivity as a false negative
prediction could have severe implications in the Emergency
Radiology (ER) environment. This was achieved by first
exposing the model to learn the appearance and patterns of
pneumothorax in the 1st fold and later on slowly exposing the
model to learn on pneumothorax negative segments while
annealing the positive regions of pneumothorax in the 2nd and
3rd folds.

Fig.2.2.1 Chest Radiograph Fig.2.2.2 Segmental image
instances

III. MODEL ARCHITECTURE AND TRAINING

A. MODEL ARCHITECTURE
1) Full Image Approach
In this approach U-Net architecture [6] with an efficient

backbone such as ResNet-34 [11] [19] was used as encoder
and decoder because the features of pneumothorax are very
subtle. A U-Net [6] is a Convolutional Neural Network (CNN)
architecture that was developed for bio medical image
segmentation. A ResNet [11] is used for the encoder/down
sampling section of the U-Net [6]. In this model, We have
used a ResNet-34, a 34 layer ResNet architecture [11], as this
was found to be very effective, was faster to train and used
lesser computational memory than a ResNet-50 architecture
[11]. ResNet is a CNN architecture, made up of a series of
residual blocks (ResBlocks) with skip connections. When
using only U-Net architecture [6] the predictions tend to lack
fine detail. To help address this, cross or skip connections are
made from the same four residual blocks in down-sampling
path to its respective corresponding residual blocks in the up-
sampling path. The model utilizes an input image and a ground
truth mask both of dimensions 1024x1024x3 (Height x Width
x Channels) and outputs a binary mask of the same dimensions.
A graphical representation of the model architecture can be
viewed in Fig.3.1.1

2) Segmental Approach
A 10 block custom U-Net [6] with 39 layers was used with

each block consisting of 2 Convolution 2D and 1 MaxPooling
2D layers. At the end of the model architecture the last block
consisted of a Convolution 2D layer with 3x3 kernel and a
Convolution 2D layer with 1x1 kernel (with the former layer
using 2 filters) which used sigmoid activation for pixel level
classification. Adam optimizer was used to optimize the
weights selection for the convolutional kernel. The model
architecture followed a strict layout where each block
contained 2x exponentially more filters than its predecessor.
The input to the model is a 448x448x1 grayscale segmental
instance of a chest radiograph and its output is a 448x448x1
feature map (binary mask) confining to the boundaries of
pneumothorax positive regions. Predictions from this
architecture were further subjected to a simple thresholding to
reduce False Positive (FP) predictions. A graphical
representation of the model architecture can be viewed in
Fig.3.1.2

The quantification of the pneumothorax is done by
dividing the area of pneumothorax by the area of the lung
space. Where, the area of pneumothorax is a product of model
output and the pixel spacing of individual radiographs.

B. TRAINING
1) Full Image Approach
Images and their corresponding binary ground truth masks

of dimension 1024x1024x3 were used as inputs for training
using NVIDIA 1080Ti of 11gb GPU [12]. The training was
performed in 5 folds cross-validation split strategy. Each fold
was trained in 2 stages, 1st stage and 2nd stage had positive
and negative images in the ratio 0.8:0.2 and 0.6:0.4
respectively. All folds in both stages were trained with mini
batch size of 2 with the following parameters: Adam
optimizer, reduce learning rate on plateau, early stopping with
patience of 3, combined loss which includes focal loss [14],
binary cross entropy, and dice loss for 50 epochs per fold.

12

LatticePNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

Fig.3.1.1 Full Image Approach Architecture [15]

Fig.3.1.2 Segmental Image Approach Architecture [16]

To avoid over-fitting and to make it more generalized on
different kinds of image quality, various augmentation
techniques were used during training. Dice coefficient [13]
was used as the main validation metrics in callbacks used to
track the improvement of model in each epoch. The dice
coefficient [13] was calculated on multiple predefined binary
thresholds on final output feature map and the models with the
best dice coefficient with its corresponding threshold were
recorded. After training of all folds in first stage, best weights
were selected from each fold and used for transfer learning for
2nd stage with cosine annealing learning rate. The same
process of selection on the basis of dice coefficient is used to
choose the best model from each fold for better accuracy in
the second stage. Finally, the best model from each fold is
chosen for ensembling for better accuracy.

2) Segmental Approach
The model was trained on the segmental instances of chest

radiographs of dimensions 448x448x1 (Height x Width x
Channels) with binary masks of dimensions 448x448x1 as the
ground truth, in 3 folds as described in the “Methods" section
above. The model was initialized with random weights using
He-Normal kernel initializer. The network was trained with
Adam as the optimizer with a learning rate of 10-3, epsilon of
0.01, and a decay rate of 10-12. A custom loss function
bin_dice_loss was used to gain a measure of both
classification and segmentation losses, This was achieved by
using a combination of binary cross-entropy and dice_loss [13]
(bin_dice_loss = binary_cross-entropy + dice_loss). Two
metrics: Accuracy and Dice Co-efficient [13] were used to
keep track and evaluate the models performance throughout
the training phase. The training was carried out methodically

to replicate the “cosine annealing learning rate” effect over all
the 3 folds. Each fold of the training phase was carried out by
choosing the best performing model from the preceding folds,
a total of 2 iterations (3 + 3 folds) were performed to obtain
the final model. The complete training (all 3 folds) was carried
out with a batch size of 4 and input image dimensions of
448x448x1 on a 11gb NVIDIA 2080Ti GPU [12].
Augmentation techniques were used to avoid over-fitting of
the model and to make it more generalized to various quality
of input images as seen on a live work list of ER environment.
The model was validated by feeding carefully curated and
augmented images.

IV. RESULTS
 Both the approaches were tested on a portion of the data
set from the sources previously mentioned in section II, which
was initially excluded from both training and validation sets
and consisted of a batch of chest radiographs numbering 1,578.
For calculating the results, performance metrics such as binary
Accuracy, Dice Co-Efficient [13], Focal Loss [14], Bin-Dice
Loss, Sensitivity and Specificity are used as shown in
equations (1), (2), (3), (4), (5) and (6) respectively.

 = (+)
(+ + +)

 − − Equation (1)

 = 1 − (GT ∗ P)
(GT + P) − − Equation (2)

Lattice

13

PNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

 = [−GT ∗ (α ∗ ((− P)γ) ∗ (P))] + [−(
− GT) ∗ ((− α) ∗ ((P)γ) ∗ (
− P))] − −Equation (3)

 (BCE) = GT ∗ (− (P)) + (−
GT) ∗ (− (− P)) 

Bin − Dice Loss = (BCE + Dice Loss) − − Equation (4)

 =
(+)

 − − Equation (5)

 =
(+)

 − − Equation (6)

Where, TP (True Positive) - Chest Radiographs
containing Pneumothorax flagged as positive.

FP (False Positive) - Chest Radiographs without
Pneumothorax flagged as positive.

FN (False Negative) - Chest Radiographs with
Pneumothorax flagged as negative.

TN (True Negative) - Chest Radiographs without
Pneumothorax flagged as negative.

GT (Ground Truth) - Actual regions of pneumothorax
P (Prediction) - Regions predicted as pneumothorax by

model
α - Scaling Factor
γ - Focusing Parameter
Dice Coefficient - Represents the percentage of overlap

between the ground truth and model prediction.

The full image approach after training gives the accuracy
of 0.9417, sensitivity of 0.9084, specificity of 0.9510,
combined loss of 0.51, dice coefficient of 0.865 and AUROC
as shown in Fig.4.1(a.) through Fig.4.1(c.) respectively.

(a.) Combined Loss

(b.) Dice Coefficient

(c.) AUROC

Fig.4.1

The segmental approach after training gives the accuracy
of 0.9683, bin-dice loss of 0.35, dice coefficient of 0.72,
learning rate, sensitivity of 0.986, specificity of 0.95 and
AUROC as shown in Fig.4.2(a.) through Fig.4.2(h.)
respectively.

(a.) Accuracy (b.) Validation Accuracy

(c.) Bin-Dice Loss (d.) Validation Bin-Dice Loss

(e.) Dice Coefficient (f.) Validation Dice Coefficient

(g.) Learning Rate (h.) AUROC

Fig.4.2

A. Full Image Approach
While both the models yield good results overall, the full

image approach yields better detection and quantification on
instances which stretch over multiple segmental instances as
it has a better overview of the surroundings of the abnormality

14

LatticePNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

and hence performs better in such scenarios. A few sample
outputs for the full image approach can be viewed below in
Fig. 5.1.1 and 5.1.2.

Fig.5.1.1 Full Image Approach Model Prediction

Fig.5.1.2 Full Image Approach Model Prediction

In the above figures the regions highlighted in red

represent the ground truth i.e. actual regions of pneumothorax
and the regions highlighted in green represent the model
prediction of pneumothorax regions.

B. Segmental Approach
While both the models yield good results overall, the

segmental approach performs better in detecting subtle and
smaller instances on pneumothoraces which are often missed
by the radiologists during heavy workloads. While the
segmental approach has better performance in detecting
smaller and subtle regions of pneumothoraces, it is challenged
when it comes to the detection of pneumothoraces which
spread over multiple regions or fall in between the boundaries
of the segmental instances. To counteract this, issue the
segmental model included regions of overlaps in between the
segmental image instances which helped it to mitigate the
previously mentioned issues. A few sample outputs for the full
image approach can be viewed below in Fig. 5.1.1 and 5.1.2.

Fig.5.2.1 Segmental Approach Model Prediction

Fig.5.2.2 Segmental Approach Model Prediction

In the above figures the regions highlighted in green

represent the ground truth i.e. actual regions of pneumothorax

and the regions highlighted in blue represent the model
prediction of pneumothorax regions.

V. CONCLUSION
This study was conducted with the aim of improving the

efficiency of pneumothorax detection and quantification.
Integrating these models into the workflow of radiologists can
aid them by highlighting pneumothorax and accurately
quantifying it, thereby enhancing the reporting accuracy and
reducing the turn around time. The two approaches presented
in this paper hold promising results in detection and
quantification of pneumothorax regions. Of the two
approaches discussed in this study the Full Image approach
provided higher confidence in terms of localization while, the
Segmental approach performed higher in terms of AUROC as
shown in the “Results” section above. We hypothesize that an
ensemble of both the approaches could outperform their
individual results that inherits the best of both. Future work
could include the various augmentation techniques that can be
used to improve both the approaches or training a single model
using a combined architecture.

VI. ACKNOWLEDGMENT
We would like to thank Keras [17] and Tensorflow [18]

for providing us a reliable framework, which eases the work
involved in prototyping and experimentation of deep learning
algorithms. We would like to thank Kaggle [4] for hosting the
“SIIM-ACR Pneumothorax Segmentation” competition
which reduced the work involved in data sourcing, annotation
and provided us a platform to learn from many bright minds.
We would like to thank Image Core Lab for providing and
annotating the data set.

VII. REFERENCES
[1] Zarogoulidis P, Kioumis I, Pitsiou G, Porpodis K, Lampaki S,

Papaiwannou A, Katsikogiannis N, Zaric B, Branislav P, Secen N,
Dryllis G, Machairiotis N, Rapti A, Zarogoulidis K., “Pneumothorax:
from definition to diagnosis and treatment”, J Thorac Dis. 2014
Oct;6(Suppl 4):S372-6. doi: 10.3978/j.issn.2072-1439.2014.09.24.
PMID: 25337391; PMCID: PMC4203989.

[2] Dataset, Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM.
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common
Thorax Diseases. IEEE CVPR
2017, http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_
ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf

[3] Dataset, https://siim.org/page/pneumothorax_challenge
[4] Dataset, https://www.kaggle.com/c/siim-acr-pneumothorax-

segmentation/overview
[5] André Gooßen, Hrishikesh Deshpande, Tim Harder, Evan Schwab, Ivo

Baltruschat, Thusitha Mabotuwana, Nathan Cross, Axel Saalbach,
“Deep Learning for Pneumothorax Detection and Localization in Chest
Radiographs”, arXiv:1907.07324 [eess.IV]

[6] Olaf Ronneberger, Philipp Fischer, Thomas Brox, “U-Net:
Convolutional Networks for Biomedical Image Segmentation”,
arXiv:1505.04597v1 [cs.CV]

[7] Murtadha D. Hssayeni, M.S., Muayad S. Croock, Ph.D., Aymen Al-
Ani, Ph.D., Hassan Falah Al-khafaji, M.D., Zakaria A. Yahya, M.D.,
Behnaz Ghoraani, Ph.D, “Intracranial Hemorrhage Segmentation
Using Deep Convolutional Model”, arXiv:1910.08643v2 [eess.IV]

[8] Ayat Abedalla, Malak Abdullah, Mahmoud Al-Ayyoub, Elhadj
Benkhelifa, “The 2ST-UNet for Pneumothorax Segmentation in Chest
X-Rays using ResNet34 as a Backbone for U-Net“,
arXiv:2009.02805v1 [eess.IV]

Lattice

15

PNEUMOTHORAX DETECTION AND CLASSIFICATION ON CHEST
RADIOGRAPHS USING ARTIFICIAL INTELLIGENCE

[9] Jiang, Yun; Wang, Falin; Gao, Jing; Cao, Simin. 2020. "Multi-Path
Recurrent U-Net Segmentation of Retinal Fundus Image" Appl. Sci.
10, no. 11: 3777.

[10] El Adoui, Mohammed; Mahmoudi, Sidi A.; Larhmam, Mohamed A.;
Benjelloun, Mohammed. 2019. "MRI Breast Tumor Segmentation
Using Different Encoder and Decoder CNN Architectures" Computers
8, no. 3: 52.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual
Learning for Image Recognition“, arXiv:1512.03385v1 [cs.CV]

[12] GPU, https://www.nvidia.com/en-in/
[13] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sébastien Ourselin, M.

Jorge Cardoso, “Generalised Dice overlap as a deep learning loss
function for highly unbalanced segmentations”, arXiv:1707.03237v3
[cs.CV]

[14] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár,
“Focal Loss for Dense Object Detection“, arXiv:1708.02002v2
[cs.CV]

[15] Shvets, Alexey & Iglovikov, Vladimir & Rakhlin, Alexander &
Kalinin, Alexandr. “Angiodysplasia Detection and Localization Using
Deep Convolutional Neural Networks.”, arXiv:1804.08024v1 [cs.CV]

[16] Alex Bäuerle, Christian van Onzenoodt, Timo Ropinski, “Net2Vis -- A
Visual Grammar for Automatically Generating Publication-Ready
CNN Architecture Visualizations”, arXiv:1902.04394 [cs.LG]

[17] Framework, https://keras.io/
[18] Framework, https://www.tensorflow.org/.
[19] Sneddy, https://github.com/sneddy/pneumothorax-segmentation/

16

LatticeMACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

Machine learning approach to predict patient
position for preventing bedsores
Aditya Aggarwal

Advanced Analytics Practice
Abzooba Inc.
Pune, India

aditya.agarwal@abzooba.com

Sujoy De
Advanced Analytics Practice

Abzooba Inc.
Pune, India

sujoy.de@abzooba.com

Abstract - The Agency for Healthcare Research &
Quality estimates more than 2.5 million individuals in the
United States develop bedsores annually that costs $9.1-
$11.6 billion to the healthcare system. In this paper, we
develop a low-cost solution to reduce the risk of bedsores
for bed-ridden patients using machine learning. Elderly
patients with mobility impairments are the highest risk
population segment for bedsores (also known as pressure
ulcers). Currently, smart beds that send alarms when
patients have not changed their position on bed for long
time are used to manage the risk of developing bedsores.
However, such smart devices are cost prohibitive. The
proposed affordable solution uses low-cost load-cells’
readings to accurately estimate the patient position with
an accuracy of 98.8%. Specifically, the solution manages
bedsore risk by deriving meaningful intuitive features
that are used by machine learning model to generate
alerts when a patient has been in the same position for a
prolonged period of time.

Keywords – bedsores, pressure ulcers, smart beds, patient
position, predictive modeling

I. INTRODUCTION

Hospital smart-beds are integrated solutions for
patient care, assistance and monitoring. It seamlessly
integrates into the healthcare system and enables
caregivers by providing many functionalities to care
for their patients effectively. One of such functionality
provided is alerting caregiver if a patient is at risk of
developing pressure ulcers. Pressure ulcers are
developed if a patient lies in same position for a long
period of time. Its treatment is costly, with an average
charge per stay of $37,800 [1]. Preventing pressure
ulcers has been a nursing concern for many years.
Many clinicians believe that pressure ulcer
development is not simply the fault of the nursing care,
but rather a failure of the entire heath care system.
However, Hospital smart-beds are too big and
expensive, and mats that enable beds detecting
pressure sores alone cost ~$6000.

Our objective is to reduce the cost of smart-beds
through the use of predictive analytics. In this paper,
we will explain the use of predictive analytics to
predict the position of patient lying on the bed. The
estimation of the patient position on bed will help in
generating real time alerts that can be sent to
healthcare professionals to change the position of a
patient if he/she is in a particular position for a long
period of time.

Our design involves a bed consisting of 4 planks on
top of bed with 4 load cell on each plank measuring
the weight readings of the patient. The 4 planks cover
the entire length of the bed as shown in fig 1.
Distribution of patient weight on these 16 load cells
are captured and processed through a machine learning
algorithm to estimate the patient position. There are
total 5 positions that our algorithm will be predicting.
Our algorithm predicts patient position with overall
accuracy of more than 98%.

II. LITERATURE REVIEW

Sensing the patient position on bed is not a new
problem that the researchers are working on. We can
find literatures where researchers used pressure sensor
readings to detect the patient position as also discussed
in the below 2 papers:

1. Smart care beds for elderly patients with
impaired mobility [2]: This paper discusses
the design of a smart care bed using the
pressure reading from sensors for caring
elderly patients with impaired mobility. A
total of 45 sensors capturing the accumulated
pressure were used for this purpose. The
smart bed prototype can detect the posture of
a patient into three positions namely supine,
left lateral, and right lateral by detecting
which side of bed are accumulating pressure
via sensors. However the bed can only

Lattice

17

determine the posture if the patient has been
lying in the same position for more than one
minute. Also the performance of the bed in
detecting the posture of various patients is
affected by the size of the patient and its
parameters need to be adjusted for the same.

2. A Smart Bed Platform for Monitoring &
Ulcer Prevention [3]: Researchers leveraged
two categories of features, posture
independent features such as blood pressure
and posture dependent features such as center
of pressure. With these set of features, a
binary classifier for classifying whether a
patient is at high risk of developing pressure
ulcer or not is developed. Machine learning
algorithms namely SVM classifier is used to
train the model that classify the risk of
developing the pressure ulcer.

In this paper, we will talk about our contribution that
is focused towards

1. Minimize the number of load cells on bed
without compromising the classifier accuracy
to bring down overall cost.

2. Simplifying the feature engineering by
crafting intuitive features and develop a
robust position detection classifier.

III. OUR DESIGN

Hospital smart bed platform consists of 4 sections of
different size to enable the movement of patient on bed
(as shown in fig 1). Our smart-bed design consists of
planks equipped with load cells placed on top of
platform of the bed. These planks are equipped with
total 16 load cells (LC1 – LC16), i.e. 4 load cells on
each plank.

Our system takes the reading from load cells at an
interval of 10 seconds each. Our trained patient
position prediction model, deployed onto the bed
embedded device, processes the load cell readings as
input and provides the estimated patient position. If the
patient is not found to change his/her position for more
than specified configured time then an alert is
triggered to caregiver through this system. This data is
also sent to a centralized database using wireless
services.

Fig 1: Top image - smart bed; bottom image - plank and sensor
placement between bed flat surface and mattress

IV. METHODOLOGY

A machine learning solution is prepared to estimate
the patient position on bed using 16 pressure load cell
readings on 4 planks placed between bed platform and
the mattress. Machine learning model is trained to
predict a total of 5 positions (as shown in fig 2)
namely, Supine, Left Lateral, Partial Left Lateral,
Right Lateral and Partial Right Lateral.

Two pipelines are created with components as shown
in fig 3. Pipelines are as follow:

1. Learning pipeline to train the model
2. Classification pipeline to predict the position

Fig 2: Different positions on bed

MACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

18

LatticeMACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

We will discuss details of each of these components in
the further sections.

A. Data collection

Data was generated in a controlled environment with
predetermined subjects whose weight ranged from 60
kg to less than 100 kg. Each subject was put in 5
different positions (as shown in fig 2) and then
readings of 16 load cells along with their positions
were logged. This data was used to build a predictive
model that estimates patient position on the bed.
Sensor readings distribution by position is given in
table 1.

TABLE 1
SENSOR READINGS DISTRIBUTION BY POSITION

Summary of the data collected

 Total subjects considered for data collection
= 28

 Total sensor readings = 4560

B. Data preprocessing

Before we start feature engineering or modeling, data
is cleaned and normalized. This preprocessing steps is
applied to the whole dataset. Following steps were
done in order of given sequence-

1. Missing value treatment: Removed samples
with missing values for any of the load cell

2. Outlier removal:
a. Removed reading where cumulative

readings from load cells is less than
50.0 kg and more than 110.0 kg.
Please note “cumulative readings
from load cells” should be same as
weight of the subject.

b. Remove samples with outliers in
them. Outliers have been defined as
load cell reading greater than 3.5
standard deviation away from the
mean

TABLE 2
DATA DISTRIBUTION BY POSITION
Load Cell

name
Sample Raw

reading
Normalize
d reading

LC1 5.9 0.081
LC2 6.2 0.085
LC3 13.2 0.181
LC4 14.2 0.194
LC5 6.7 0.092
LC6 5.9 0.081
LC7 4.1 0.056
LC8 4.3 0.059
LC9 1.0 0.014

LC10 1.2 0.016
LC11 1.3 0.018
LC12 1.0 0.014
LC13 2.6 0.036
LC14 3.8 0.052
LC15 0.5 0.007
LC16 1.2 0.016
Total 73.1 1.000

Subject position on bed Total readings
1 Supine 1563
2 Left Lateral 1032
3 Right Lateral 965
4 Partial Left 488
5 Partial Right 512

Fig 3: Learning and Classification pipeline

Lattice

19

3. Data Normalization: Normalized the load cell
readings by converting them into percentages
(i.e. “load cell reading” / “cumulative
readings from load cells”) as shown in table
2.

C. Feature engineering

Features to explain position using 16 load cell
normalized readings are created after data pre-
processing. Load cell normalized readings shows the
distribution of mass on the bed. Using mass
distribution on bed and calculated center of mass
(COM) on each plank, a lot of features are created to
explain patient position. The calculation for center of
mass on plank 1 is as shown below.

COM x co-ordinate on plank 1 = (m1 * x1 + m2 * x2
+ m3 * x3 + m4 * x4) / (m1 + m2 + m3 + m4)
COM y co-ordinate on plank 1 = (m1 * y1 + m2 * y2
+ m3 * y3 + m4 * y4) / (m1 + m2 + m3 + m4)

Where,
On Plank-1 if we plot the position of load cells using
coordinate system such that LC1 is at (x1, y1) as
shown in fig 4, then
Mass “m1” is present on (x1, y1)
Mass “m2” is present on (x2, y2)
Mass “m3” is present on (x3, y3)
Mass “m4” is present on (x4, y4)

Similarly, COM calculation for other planks are also
done.

1st set of features is created based on hypothesis that
“for Supine position” all planks COM will fall in a
straight line. However, for left lateral position, plank 3
COM will fall above fitted straight line and for right
lateral below straight line” as shown in fig 5. Using
this hypothesis below features are created.

 A straight line is fitted using 4 planks COM. Error
is calculated in y direction between each plank
COM and the fitted line. Summation of this error

is named as “y_error”. Distribution of mean of
y_error with various positions is shown in fig 6.

 A straight line is fitted using plank 1 and plank 2
COM (as shown in fig 5). Distance in y-direction
between plank 3 COM and the fitted line is
calculated. This feature is named as
plank_3_dev_bucket.

 Similarly, a straight line is fitted using plank 1 and
plank 2 COM. Distance in y-direction between
plank 4 COM and the fitted line is calculated. This
feature is named as plank_4_dev_bucket.

2nd set of features is created with hypothesis that
“patient in left lateral position will have more weight
towards left side of the bed and similarly, patient in
right lateral position will have more weight towards
right side of the bed” as shown in fig 7.

Fig 7: Plot of y coordinate of COM for each plank and
position

 Percentage of total weight of the patient covered
by sensors situated on left side of the bed. This
feature is named as “left_sensors_pct”

 Y co-ordinates of center of mass for each plank
(namely, plank_1_com_y, plank_2_com_y,
plank_3_com_y, plank_4_com_y).

As can be seen in fig 7,

Fig 4: Different positions of load cells on the bed

Fig 6: Distribution of mean of y_errors with various
positions

MACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

20

LatticeMACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

 For supine position, the y co-ordinates of the
COM is near the middle of the bed (0.5) for
each of the plank

 Similarly, for left lateral and partial left
positions, we are seeing the y co-ordinates
being more towards the left side of the bed
and

 Similarly, for right lateral and partial right
positions, we are seeing the y co-ordinates
being more towards the right side of the bed

3rd set of features is aimed to differentiate right lateral
position from partial right lateral position, and, left
lateral position from partial left lateral position. It is
found that standard deviation of normalized sensor
readings from each plank is able to differentiate these
positions as shown in fig 8.

D. Model iterations

After data pre-processing, we were left with 4560 data
points spanning across 28 number of subjects. Out of
28 subjects, 26 were taken to train the model and the
remaining subject data to test the model. It accounts
for 3908 data points for training and 652 data points
for training. Distribution of train and test datasets by
position is given in table 3.

Model building and feature preparation was done in
iterative manner. We came to the best model and best
set of features in 3 different iterations.

Fig 5: Center of mass on plank 1 (head plank), plank 2, plank 3 and plank (leg plank) for supine, left and right positions. The plank 3 COM is
above the fitted line through plank 1 and plank 2 COM for left lateral position and below for right lateral position

Fig 8: Distribution of standard deviation of planks reading
with various positions

Lattice

21

TABLE 3
DISTRIBUTION OF VARIOUS POSITION IN TRAIN AND

TEST DATA

Iteration 1: Best accuracy on test dataset was obtained
with Random Forest model using 6 set of features as
shown in table 4.

Observation from Iteration 1: It was found that model
was struggling to differentiate left lateral position from
right lateral position and vice versa as shown in table
5. In next iteration, focus was to introduce such
features that will differentiate between these 2
positions.

Iteration 2: Two more features that were aimed to
differentiate left lateral position from right lateral
position was added that boosted the accuracy further
as shown in table 6.

Observation from iteration 2: it was found that model
was struggling to differentiate left lateral position from
partial left lateral position as shown in table 7. In next
iteration, focus was to introduce such features that will
differentiate between these 2 positions.

Iteration 3: In this iteration, we focused on features
that should be able to differentiate partial left lateral
position from partial right lateral position. Post these
feature additions, model accuracy reached to 98.8% on
test data as shown in table 8.

Observation from iteration 3: Model is able to classify
all the positions accurately as shown in table 9.

** Iteration 1 **
TABLE 4

Classifier Hyper-parameters Features used Accuracy Log Loss
1 Random Forest Number of trees = 20 1. left_sensors_pct

2. y_errors
3. plank_1_std
4. plank_2_std
5. plank_3_std
6. plank_4_std

81.9% 0.69
2 Decision Tree Default 79.0% 7.26
3 Logistic Regression Default 56.6% 1.15
4 KNN* Number of neighbors = 5 56.3% 8.94
5 SVM* Kernel = Radial Basis; C

(penalty) = 0.025 21.0% 1.56

*Data was not standardized
TABLE 5

CONFUSION MATRIX AFTER ITERATION 1

Confusion Matrix Predictions
Left Lateral Supine Right Lateral Partial Left Partial Right Overall

A
ct

ua
l

Left Lateral 121 0 46 0 0 167
Supine 0 164 3 0 0 167
Right Lateral 22 2 140 0 0 164
Partial Left 44 0 0 27 0 71
Partial Right 0 1 0 0 82 83
Overall 187 167 189 27 82 652

** Iteration 2 **

TABLE 6
Classifier Hyper-parameters Features Accuracy Log Loss
1 Random Forest Number of trees = 20

1. - 6. All features in
iteration 1
7. plank_3_dev_bucket
8. plank_4_dev_bucket

87.1% 0.46
2 KNN** Number of neighbors = 5 75.6% 5.2
3 SVM** Kernel = Radial Basis; C

(penalty) = 0.025 75.8% 0.7

4 Random Forest with early
stopping

Number of trees = 20; Min
samples to split a node = 25;
Minimum samples required at a
leaf node = 5

87.7% 0.42

**Data standardized using min max scaler

 Overall data Training data Test data
Supine 1563 (34%) 1396 (36%) 167 (26%)
Left Lateral 1032 (23%) 865 (22%) 167 (26%)
Right Lateral 965 (21%) 801 (20%) 164 (25%)
Partial Left 488 (11%) 417 (11%) 71 (11%)
Partial Right 512 (11%) 429 (11%) 83 (13%)
Overall 4560 (100%) 3908 (100%) 652 (100%)

MACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

22

LatticeMACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

TABLE 7
CONFUSION MATRIX AFTER ITERATION 2

** Iteration 3 **
TABLE 8

Classifier Hyper-parameters Features Accuracy Log Loss
1 Random Forest with early

stopping
1. Number of trees = 20
2. Minimum samples to split a
node = 25
3. Minimum samples required at
a leaf node = 5

1. - 8. All features of
iteration 2
9. Y co-ordinate of COM
of plank 1, plank 2, plank
3, plank 4

98.8% 0.35

TABLE 9

CONFUSION MATRIX POST ITERATION 3

Confusion Matrix
Predictions

Left
Lateral Supine Right Lateral Partial Left Partial Right Overall

A
ct

ua
l

Left Lateral 165 1 0 1 0 167
Supine 0 164 2 0 0 167
Right Lateral 0 1 163 0 0 164
Partial Left 1 0 0 70 0 71
Partial Right 0 0 1 0 82 83
Overall 166 166 166 71 83 652

V. RESULTS

Our approach is able to predict patient position on bed
with an accuracy of 98.8% on test dataset. Best model
selected post model iterations is Random forest using
feature as shown in table 8. Most important features
comes out to be “Summation of error from a fitted line
through COM”, “Y coordinate of COM on plank 3”
and “Distance in y-direction between plank 3 COM

and the fitted line passing through Plank 1 COM and
Plank 2 COM” as shown in fig 9. Learning curve
showing the plot of training and test error by number
of training instances suggests that test error is
remarkably close to training error and within desired
tolerance limit as shown in fig 10.

Our solution is able to predict each position with more
than 0.98 precision and recall as shown in table 10.

TABLE 10
PERFORMANCE ON TEST DATASET

Confusion Matrix
Predictions

Left
Lateral Supine Right Lateral Partial Left Partial Right Overall

A
ct

ua
l

Left Lateral 119 0 0 48 0 167
Supine 0 164 3 0 0 167
Right Lateral 0 1 163 0 0 164
Partial Left 12 0 0 59 0 71
Partial Right 0 11 5 0 67 83
Overall 131 176 171 107 67 652

Description Precision Recall f1-score
Left Lateral 0.99 0.99 0.99
Supine 0.99 0.98 0.98
Right Lateral 0.98 0.99 0.99
Partial Left 0.99 0.99 0.99
Partial Right 0.99 0.99 0.99

Fig 9: Feature importance

Lattice

23

Fig 10: Learning curve

VI. CONCLUSION

Our solution is able to bring down the cost of bed that
is able to assist caregiver by providing alarm if patient
is lying in same position for a long time. It uses
machine learning solution that estimates the patient
position on bed using low cost load-cells. Our machine
learning algorithm’s high accuracy helped in reducing
false alarms and hence boosted the confidence of
caregiver for the machine.

Our solution is able to bring down the cost of bed that
is able to assist caregiver by providing alarm if patient
is lying in same position for a long time. It uses
machine learning solution that estimates the patient
position on bed using low cost load-cells. Our machine
learning algorithm’s high accuracy helped in reducing

false alarms and hence boosted the confidence of
caregiver for the machine.

Currently, our model gives the solution to reduce bed-
ulcers only, we can fine tune the same model to predict
if the patient is at risk of falling from the bed using the
same design but with additional collected data.

VII. REFERENCE

1. C Allison Russo, Anne Elixhauser, “Hospitalizations
Related to Pressure Sores, 2003”, Healthcare cost and
utilization project, April 2018 https://www.hcup-
us.ahrq.gov/reports/statbriefs/sb3.pdf

2. Youn-Sik Hong, "Smart Care Beds for Elderly Patients
with Impaired Mobility", Wireless Communications and
Mobile Computing, vol. 2018, Article ID 1780904, 12
pages, 2018. https://doi.org/10.1155/2018/1780904

3. R. Yousefi et al., "A smart bed platform for monitoring
& Ulcer prevention," 2011 4th International Conference
on Biomedical Engineering and Informatics (BMEI),
Shanghai, 2011, pp. 1362-1366, doi:
10.1109/BMEI.2011.6098589.

MACHINE LEARNING APPROACH TO PREDICT PATIENT POSITION FOR
PREVENTING BEDSORES

24

LatticeSOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

 Solution Approach to Resolve Vehicle Routing

Problem using Deep Reinforcement Learning
Monika Singh

Affine Analytics Pvt. Ltd
Bengaluru, India

monika.singh@affineanalytics.com

Sourav Mazumdar
Affine Analytics Pvt. Ltd

Bengaluru, India

sourav.mazumdar@affineanalytics.com

Abstract—In this work, we present a Deep Reinforcement
Learning based approach as a soluion to one of the popular
optimization problems, namely “Capacitated Vehicle Routing
Problem”. We have benchmarked the results againt genetic
algorithm and have evaluated the performance using two
KPIs- Travelling cost (distance covered) and Computational

time. The comparison shows a 5X-20X reduction in cost and

a 100X–1000X reduction in computational time. The
Deep Reinforcement Learning based solution adheres to

an adaptive learning framework where the system
automatically thrives for optimality rather than being

explicitly programmed.

Keywords- Vehicle Routing Problem (VRP), Capacitated

Vehicle Routing Problem (CVRP), Reinforcement
Learning, Optimization, Genetic Algorithm

I. INTRODUCTION

Vehicle Routing Problem (VRP) -VRP can be defined as a

problem for finding the optimum routes for a given set of
vehicles to fulfill delivery and collection for a specified set of

customers based on some pre-defined demand. Finding the
optimal routes may involve business constraints like serving

each customer only once. Our solution focuses on mapping
the optimal routes for a single vehicle; hence the problem

reduces to a simple Travelling Salesman Problem [8].
Optimal routes serve the purpose of minimizing the overall

transportation cost, minimizing the number of vehicles,
minimum distance travelled, minimum travel time, or other

objectives. Some of the most important applications of VRP
are Supply Chain Management, Mail delivery, Bus and

railway route optimization, vehicle optimization, etc.
One of the variants of VRP is Capacitated VRP (CVRP).

CVRP states that m capacitated vehicles initially at depot
locations are required to fulfill discrete demands n customer

nodes. The objective is to design the set of least distance
paths with known customer demands.

CVRP is one of the most popular problems in Network
Optimization and is classified as NP-hard problem. It means

the size of the problem that can be solved optimally using
mathematical programming or combinatorial optimization

may be limited. Hence, most of the commercial solutions
tend to use a meta-heuristic approach to solve real-world

VRPs.
In this whitepaper, we have discussed one of the effective

ways to solve the CVRP problem using Deep Reinforcement
Learning. Below are the highlights of the whitepaper:

 Benchmarked the results of DeepRL against a

popular algorithm called Genetic Algorithm.

 Compared the performance using 2 KPIs –

Travelling cost (distance covered) and
Computational time.

 During the comparison of KPIs performance, we

have observed a 5X-20X reduction in cost and a

100X–1000X reduction in computational time.

 The overall solution adheres to an adaptive learning

framework where the system itself identifies the
optimal solution without explicitly programming.

II. RELATED WORK

Algorithms for solving VRP

VRP is an NP-hard optimization problem and various exact
and approximation algorithms have been used to solve it. The

algorithms are based on linear programming techniques,
Branch and Bound, Branch and Cut; the approximate

algorithms are heuristic-based viz. Genetic algorithms,
Evolutionary algorithms, Tabu search, Dynamic

Programming, and Neural networks, etc.
For n customer nodes and one depot nodes, there are n!

numbers of paths that exist. For large VRP instances, using
exact methods for solving VRP is computationally expensive

and time-consuming. Due to this reason, approximate
algorithms that employ heuristic search are often employed

to solve VRP problems. The choice of using exact vs.
approximate algorithms is determined by the trade-off

between optimality and computational cost.

Following are the recent important algorithmic developments

for solving VRP problem in chronological order:

i) Pointer Networks [2]: Pointer Networks (PN) is a kind of
Recurrent Neural Networks that can be trained to produce

outputs of variable lengths, which is vital in the case of VRP
as the route lengths shall very. The PN is used in a supervised

way to find near-optimal tours to Travelling Salesman
Problem from the given ground truth optimal solutions.

Fig.1: Pointer Networks (Reference: Nazari et al. 2018)

Lattice

25

The drawback of this architecture is its sensitivity to small
changes in the sequences due to which it gave inconsistent

results. For instance, in Fig 1, if the demand d1 of node S1 is
partially/completely fulfilled, the change should be

incorporated. For this, the entire Pointer network is required
to be updated to compute the probabilities in the next

decision point (with a new d1 value). Another drawback is the
dependence on supervision which prohibits PN from finding

better solutions than the ones provided during training.

ii) Actor-Critic Networks [1]: The actor-critic model
proposed by Bello et al. [1] is the first work that lays the

foundation for using reinforcement learning and neural
networks to model VRP.

- The pointer network is trained without supervised solutions.
- The drawback of this architecture is that it assumes that the

systems to be static over time. However, VRP should include
the dynamic nature of the problem, i.e. suppose the demand

of the customer node is fulfilled, its demand should be
updated. This is the generic problem in Pointer Networks and

is discussed in the previous section.

iii) Reinforcement Learning for VRP [3]:
i. This method is an extension of the Actor-Critic

method [1], and it solves dynamic VRP, which
considers customer node's demand changes over

time.
ii. Long Short-Term Memory (LSTM) encoder in the

pointer networks is replaced by element-wise
projections. These are invariant to the input

sequence ordering and will discard off unnecessary
sequential information. Changing the order of any

two inputs will not affect the network.
iii. This framework in Fig 2 has an RNN decoder with

an attention mechanism that is capable of handling
both static and dynamic elements of the system and

does the combinatorial optimization using both
components.

iv. The reward is calculated based on the generated
outputs, which means that if we can verify the

feasibility of the generated output sequences, we
can learn the desired meta-algorithm.

v. The unique value addition provided by this
architecture is that if new VRP instances are

generated with the same number of nodes and
vehicle capacity, and the same location and demand

distributions as the ones used in the training, then
the trained policy will work well. As this framework

doesn’t require an explicit distance matrix
calculation and learns meta-algorithm based on the

output sequences, this
vi. is suited for constructing routes based on the new

data.

iv) Deep Reinforcement Learning (Pang et al., 2020) for
VRP

i. This architecture proposed in this work has a
dynamic attention model (AM-D) with dynamic

encoder and decoder architecture. Each node is
characterized dynamically in the context of the

graph. This means that the node information can be
adapted to the changes in demand, and the state

change of instance is also done.
ii. It is based on encoder-decoder architecture, where

the encoder extracts structural features of the input
instance, and the decoder incrementally constructs

the solution. At each construction step of the
decoder, the decoder predicts a distribution over

nodes, and one node at a time is selected and
appended to the partial solution.

iii. The advancement introduced in this architecture is
the dynamic encoder-decoder, the encoder and

decoder are used alternately to re-construct the
embedding of each node and construct a partial

solution.
iv. Feature of each node is learned using the

embedding learned progressively based on the
selected output paths during traversal.

3. SETTING UP THE CVRP PROBLEM USING DEEP

REINFORCEMENT LEARNING

CVRP- problem definition

There are depot nodes and customer nodes in a graph. A

depot node is responsible to fulfil the demands of each
customer node and return to itself in case of supply over. This

is shown in the following figure.

Fig.3: Vehicle Routing Problem (Pang et al., 2019)

Fig.2: Model invariant of input sequence ordering (Nazari et

al. 2018)

SOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

26

Reinforcement learning for solving CVRP problem: In this
work, we used deep reinforcement learning for solving

CVRP. For CVRP, it is required to pick up the best routes
during training and augmenting the learning in a current

timestamp from the goodness of results produced in the
previous timestamps. This makes using Neural Networks and

Reinforcement learning to approach this problem as the
combination can lead to better prediction and decision-

making processes. Neural networks can do automatic feature
selection, in VRP case selecting the routes which give the

shortest distances.

In Reinforcement learning-based solutions to VRP, learning

an optimal route is cast as a Markov Decision Process
(MDP). An MDP is a discrete-time dynamic system model,

with three components:

i) St-State of the system at time t

ii) at-the Action was taken at time t
iii) rt-the reward at time t

Let S be the set of possible states, A the set of possible

actions, and R the set of possible rewards, such that st S, a∊ t

 A, and r∊ t R. We assume that A is finite, such that we can∊

choose one of a set of discrete actions at each time point, and
that R = . The reward is meant to represent the value to usℝ

(the system controller) of a particular state. The system is
Markovian, the current state of the system depends on the

state of the system at the previous timestamp and the action
taken at the previous timestamp. The transition to the next

state is given by:

 T: P (st+1|st, at)

The solution to MDP is to find out the optimal path, where a

policy is a function π: S->A, which tells about the action to

take in a particular state. The heuristics for making decisions

are represented in the form of rules, which can be interpreted

as policies to make decisions. These policies are

parameterized using neural networks. The idea of learning

policy is discussed next.

Learning policies:

i) Policy iteration [5]: Policy iteration is a dynamic

programming-based algorithm that combines Iterative Policy

evaluation and Policy improvement. Iterative policy

evaluation is an algorithm for evaluating the goodness of a

policy by iteratively going through each state and updating

expected returns for state-values. Policy improvement is an

algorithm that compares outputs retrieved from old policy π

and a new one π' and deterministically pick the one with

higher expected returns over action values.

ii) Monte Carlo method: Instead of computing every single

action-value pair in a state space, giving the true expectation,

the Monte Carlo sampling method is used to pick up samples

of action-value pairs which can yield the best policy for the

agent. Sampling the action-value pairs from the state space is

cuts down the computation cost to a great extent, but it also

requires consciously picking those pairs which are optimal. If

the samples are finite, the probability of finding optimal pairs

also decreases. Similarly, if the number of pairs is increased,

the computational cost will rise. The trade-off between

computational cost and optimal results is also known as the

exploitation versus exploitation trade-off. Either exploit a

small space, have lesser samples, and thus cost, but it may

not be near to the optimal solution. Or explore the space

more, get more samples, and thus cost and enhance the

likelihood of getting a near-optimal solution.

State, Action, Rewards, and Policy:

From a Reinforcement learning standpoint, the following are

the definitions of States, Actions, Rewards, and Policy.

i. State: Partial solution of the instance (set of nodes

represented as a graph) and the feature of each node
of the graph.

ii. Action: Choice of choosing the next node to visit.

iii. Rewards: Negative of total tour length.

iv. Policy: Heuristic strategy parameterized by a neural
network.

3.1 Data for CVR

We have arbitrarily taken 1 depot node and 20 customer

nodes. The depot nodes and the customer nodes can be
defined by the coordinates in X-Y plane. The distance

between each node can be calculated using Euclidean
distance. Table 1 shows the location of 1 depot nodes: Each

customer node in a graph has a demand associated.

Similarly, we have arbitrarily created multiple graphs for

training (called graph instance). Each customer node is

defined by the position in X, Y coordinates.

These are also randomly assigned demand values between 0-
1. The capacity of the vehicle starting from the Depot node is

taken as 1, and as a constraint to the CVRP the demand at
any customer node cannot exceed the capacity of the vehicle.

So, the demand values range in 0-1.

3.2 The cost function

The loss is the difference between the baseline REINFORCE

[4] path length value and the value calculated on the paths
obtained by the RL algorithm. The optimal route is the

sequence of nodes traversed by the vehicle, where the
traversal cost is found minimum.

3.3 The Environment of the CVRP agents

As a vehicle starts from a depot node, the customer nodes are

being marked as unvisited. During the journey, the customer

LatticeSOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

Lattice

27

nodes will be marked visited. The functions in the
environment file are written to ensure that any customer node

once visited would be masked and a vehicle can return to
either the depot node or any other customer node except the

visited nodes.

Node No X Coordi-
nate

Y Coordi-
nate

Demand

Depot 0.848307 0.32357132

Node1 0.29036105 0.3107828 0.16666667

Node2 0.84289145 0.9391912 0.13333334

Node3 0.7035593 0.43545485 0.06666667

Node4 0.20168412 0.5328256 0.13333334

Node5 0.06545448 0.50693643 0.23333333

Node6 0.53601944 0.5814208 0.1

Node7 0.76553667 0.54667234 0.2

Node8 0.33509946 0.4530629 0.1

Node9 0.29120958 0.8327706 0.1

Node10 0.5238005 0.6762059 0.2

Node11 0.94022834 0.8333516 0.16666667

Node12 0.68327105 0.21968603 0.03333334

Node13 0.392851 0.72069836 0.2

Node14 0.84294224 0.36046684 0.03333334

Node15 0.8818841 0.04076123 0.06666667

Node16 0.6190139 0.31246388 0.23333333

Node17 0.71776164 0.03977752 0.3

Node18 0.9660357 0.4579624 0.23333333

Node19 0.39407074 0.259192 0.03333334

Node20 0.46775055 0.49120617 0.2

Table 1. Coordinates of depot nodes and customer nodes

and demands of each customer node

4. RESULTS

Using Deep Reinforcement Learning (Pang et al., 2020) for
CVRP. Refer Fig 4.

Optimal path: For a CVRP problem, the following is the
optimal path obtained for a graph instance and a depot. The

cost of the path is 8.83766, which can be further improved by
hyperparameter tuning.

Current path [0.0, 19.0, 1.0, 8.0, 4.0, 5.0, 9.0, 13.0, 14.0, 0.0,
18.0, 11.0, 2.0, 7.0, 0.0, 3.0, 6.0, 10.0, 20.0, 16.0, 0.0, 12.0,

17.0, 15.0, 0.0]

Where 0.0 indicates the depot node. The links between the

paths are directed.

Cost and loss values vs. Epochs: Refer Fig 5.

The following plot shows the cost and loss vs. the number of

epochs. As the training continues, we can observe that the
training loss decreases. This can be further improved by

hyperparameter tuning. Similarly, it can be observed that the
training cost and validation cost (which is negative of the

path length) are decreasing with training.

For comparison purpose we have used Genetic Algorithm

(GA-VRP):

Genetic Algorithm-VRP

Genetic Algorithm (GA) is a search-based optimization
technique based on the principles of Genetics and Natural

Selection. It is used in finding optimal or near-optimal
solutions to difficult problems that otherwise would take a

long time to solve. Refer [6, 7] for details.

Solution Process:

i. Initialization: In the beginning, an initial generation

must be defined. This can be done using a random

initialization.

ii. Selection: First we select a proportion of the

existing population to breed a new generation. The

selection is done on a fitness-based approach where

fitter individuals are more likely to breed than

others.

iii. Reproduction: During the reproduction phase the

next generation is created using the two basic

methods, crossover, and mutation. For every new

child, a pair of parents is selected from which the

child inherits its properties. In the crossover, process

genotype is taken from both parents and combined

to create a new child. With a certain probability, the

child is further exposed to some mutation, which

consists of modifying certain genes. This helps to

further explore the solution space and ensure, or

preserve, genetic diversity. The occurrence of

mutation is generally associated with low

probability. A proper balance between genetic

quality and diversity is therefore required within the

population to support efficient search.

SOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

28

Fig.4: Graph solution for 20 nodes generated by DeepRL

Fig.5: Cost and loss values vs. Epochs

LatticeSOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

Lattice

29

Fig.6: Cost vs. Nodes plot with different Algorithms to solve CVRP

Fig.7: Time vs Nodes plot with different Algorithms to solve CVRP

SOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

30

No of
Nodes

Cost (RL-
VRP)

Time Taken
(Sec)

Cost (GA-
VRP,

Pop=100,

Time
Taken
(Sec)

Cost
(GA-
VRP,

Pop=10
00,

Time
Taken
(Sec)

Iteration
=1000)

Itera-
tion=10

00)

20 Nodes 6.413115 0.13227 7.429141 8.8206
7308

6.61718
4412

92.4954
0444

50 Nodes 13.48943 0.17408 19.92717 79.616
6889

17.3899
509

830.737
4334

70 Nodes 18.00218 0.38383 30.76816 180.86
43137

26.6052
6445

1919.96
6506

100
Nodes

23.6285 0.58476 44.56011 458.35
58464

39.1876
1302

4683.23
8334

Table 2. Results comparison of “Deep Learning-

Reinforcement Learning (DeepRL) approach” and

“Genetic Algorithm (GA) approach” with 10 Graphs for

20, 50, 70 and 100 customer nodes.

Note: These numbers are average of 10 Graphs for 20, 50,

70 and 100 nodes.

Refer Fig 6 and Fig 7.

Report Summary:

i. Time taken by DeepRL is very less and almost

remains constant for different graph sizes.

ii. Graph generated by DeepRL and GA-VRP for 20

Nodes have almost same Cost and Time.

iii. Time Taken by GA-VRP increases significantly

with increase in number of nodes or increase in

population size (mentioned as POP in figure 6 & 7).

It means DeepRL is comparably very efficient when

number of customer nodes increases.

iv. Graph generated by DeepRL are more optimized as

we increase the number of Nodes when compared

with GA-VRP.

5. FUTURE WORK

In this work, we have used the Deep Reinforcement Learning

algorithm to solve the CVRP. There are two important

functionalities to be added to the codebase, as mentioned

below.

i) Extending “Single depots Multiple customer

nodes capacity planning problem” to “Multiple

depots Multiple customer nodes capacity planning

problem”. In the real world, there can be multiple

depot nodes, and the solution has to be optimized

considering; the possibilities of any depot to any

customer nodes with 2 constraints, and they are:

 a) The demand of each customer node

should not be more than the depot node capacity

 b) Each customer node must be traversed

only once

ii) Enriching the solution to take customer nodes

and depot nodes as geographic locations. This

technique will aid to optimize the routes between

cities in the real-world with certain constraints.

Moreover, using Euclidean distances is may is not

the most reliable way to compute the distances

between different cities. There are multiple factors

like the traffic situation, roadway conditions, etc.,

that lead to the failure of VRP/CVRP using

distances as evaluation measures. Next up, we will

include “travel time” as a measure to evaluate the

performance.

References

[1] Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S.
(2016). Neural combinatorial optimization with
reinforcement learning.arXiv preprint arXiv:1611.09940.
[2] Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer
networks. In Advances in neural information processing
systems (pp. 2692-2700).
[3] Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M.
(2018). Reinforcement learning for solving the vehicle
routing problem. In Advances in Neural Information
Processing Systems (pp. 9839-9849).
[4] Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning.Machine learning, 8(3-4), 229-256.
[5] Sutton, R. S., & Barto, A. G. (2017). Reinforcement
learning: An introduction,(complete draft).
[6] Chunyu REN (2012) Applying Genetic Algorithm for
Capacitated Vehicle Routing Problem
[7] Abdul Kadar, Abdul Kadar Muhammad Masum, Md.
Faisal Faruque, & Mohammad Shahjalal (2011) Solving
the Vehicle Routing Problem using Genetic Algorithm

[8] Rani, K., & Kumar, V. (2014). Solving travelling
salesman problem using genetic algorithm based on
heuristic crossover and mutation
operator. International Journal of Research in
Engineering & Technology, 2(2), 27-34.

LatticeSOLUTION APPROACH TO RESOLVE VEHICLE ROUTING PROBLEM
USING DEEP REINFORCEMENT LEARNING

Lattice

31

A Noninvasive model to detect Dengue based on
symptoms using Artificial Intelligence and

Machine Learning

Ruban S
PG Dept of Software Technology
St Aloysius College(Autonomous)

Mangalore, India
ruban@staloysius.ac.in

Naresha

PG Dept of Big Data Analytics
St Aloysius College(Autonomous)

Mangalore, India
nareshbhat333@gmail.com

Sanjeev Rai

Chief Research Officer
Father Muller Medical College

Mangalore, India
cmsfmci@fathermuller.in

Abstract— Artificial Intelligence has been transforming various
sectors ranging from Finance, Entertainment, sports,
Healthcare etc. The role of AI in healthcare will have an impact
in all our lives owing to the change it brings to the Patientcare
system, changing the traditional way of handling illness and
diseases. Most of the AI based applications use Machine
Learning algorithms that use data. Hence the source of Data
and the nature of Data holds the key in developing effective AI
based solutions for many health issues in the society. Though
Data is available in all the hospitals and medical care facilities
for many years now. They cannot be used directly to develop AI
based applications until and unless they are transformed and
made it into a format, on which machine learning algorithms
can work. In this research paper, we discuss the process of
developing an AI based application to predict Dengue, one of the
vector borne diseases based on the symptoms. Our work was
done on the data collected from the clinical notes of a 1500 bed
hospital in the coastal district of Karnataka. We have
implemented few of the machine algorithms like Logistic
regression, Support vector machine and Decision Tree classifier.
As the dataset is highly imbalanced (1:50), we applied over
sampling techniques (Random over sampling, SMOTE) to
overcome this problem. We compared the over sampling
techniques and find that combination of SMOTE and Decision
Tree classifier gave the best result (98% F1 micro score)
compared to the other algorithms that we used in this study.

Keywords— Artificial Intelligence, Machine Learning, Health
Care, Medical Care, Dengue, Vector Borne disease

I. INTRODUCTION

The impact of Artificial Intelligence in health care
sector is very evident, in recent times [1]. As it is defined
traditionally AI is about developing machines with
intelligence in contrast to the intelligence of human
beings [2]. With more and more advances happening in
the collection of data, processing and computing,
intelligent systems are now assisting in these various
tasks that once depended on human intervention. From
Finance to Medical care [2] scenarios are changing
drastically, in a way people never imagined before.
However, all these advantages do come with various
challenges. The challenges ranges from the algorithms,
hardware implementation, development of application
etc. AI involves developing systems that exhibit
cognitive aptitude that uses technologies such as Machine
Learning [3]. Every instance of the role of AI that we hear

about, and its applications [4] in Health care takes
advantage of the Data. Despite the digital revolution,
most of the medical data are still handwritten [5].
Problems arise when other stake holders are involved
either for interpretation or study. Poor handwritten
clinical notes [6] poses a serious threat for researchers
who are involved in data analysis. Dakshina kannada is
one among the coastal districts of Karnataka, and reports
many Dengue cases in a year. Dengue is one of the
important vector borne diseases globally [7]. Few studies
have been done to analyze the trends of vector borne
diseases[8-9]. Artificial Intelligence (AI) has been used
as a surveillance and prediction tool to predict vector
borne diseases in different parts of the world [10]. The
researchers of the above study came out with a system,
that could predict the outbreak of dengue much earlier
taking advantage of various data and parameters that
were stored in different silos. Similar studies have also
been done in other places as well [11]. Few such works
are carried out in our country. [12–14]. However, in
Indian scenario, there is hardly any study that is done in a
deeper level involving clinical notes digitization. Many
works take the demographic details and analyze. So an
attempt was made to study the trends, symptoms,
treatments of Dengue patients from the hospital records
who were admitted in the span of four years (2015-2018)
in Father Muller Medical College Hospital, Mangalore,
Karnataka state, India. The study was conducted after the
permission from the Research committees of the medical
college. The medical data are maintained by the Hospital
Medical Records Department (MRD). Section 2
elaborates the methodologies that were used and the
following section discusses the results that we obtained
from this study followed by a conclusion.

This study results have helped to understand the
Dengue fever dynamics in this region, and can be used to
predict the type of fever based on symptoms and hence
probably can be used to assist the doctors for treating their
patients quickly and effectively. Since the dataset that was
generated for this study was highly imbalanced, we studied

A NONINVASIVE MODEL TO DETECT DENGUE BASED ON SYMPTOMS
USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

32

the impact of oversampling and Synthetic Minority
Oversampling Technique (SMOTE)[15]. Our
experiments reveal that, in comparison of the other
machine learning models, Decision Tree classifier gave
the best result (98% F1 micro score) in this study.

.

II. MATERIALS AND METHODS

A. Data Sources
The Real Time Data Collection was done primarily in two

locations - the DHO office in Mangalore, and the Father
Muller Medical College. The Data from the DHO Office were
gathered from different records, files and also by visiting
different primary Health centers (PHC) and National Urban
Health Mission centers (NUMC) in and around Mangalore.
The data that were gathered from the PHC and NUMC did not
have case sheets rather only basic demographic details. Hence
the Data related to Dengue from Father Muller Medical
College was accessed after getting the approval from the
scientific and Ethics committee of the Father Muller Medical
College, Mangalore.

B. Data related to Dengue
A patient suffering from Dengue presents few Mild

symptoms such as fever, aches and pains. However most
common symptom of dengue is fever with any of the
following: eye pain, headache, muscle pain, rash, bone pain,
nausea/vomiting, joint pain [16]. Symptoms of dengue
typically last 2–7 days. Most people will recover after about a
week. The positive confirmed dengue cases that were treated
in Father Muller Medical college hospital during the year
2015-2018 were taken for the study. The individual patient
medical records were accessed. The Data were available in
two departments. The Registration department had patient
details such as their IP number, name, sex, age, city, date of
admission and date of discharge. The MRD department
maintains a huge repository of case sheets where they are
organized based on the ICD code [17].

TABLE I. Dengue Data Format maintained in Registration
Department

Fields Sample Data 1 Sample Data 2

IP Number 54xxxx45 87xxxx41

Patient Name Xxxxxxx Xxxxxxx

Age 45 54

Sex Male Male

City Mangalore Chickmangalur

DOA 20-11-2014
/09:15

10-11-2015 /10:15

Discharge Date 25-11-2014 /
01:31

17-11-2015 / 02:31

Primary Code A90 A90

Primary Code
Description

Dengue
Fever

Dengue Fever

C. Data gathered from the Medical Records Department
The Data related to Dengue from Father Muller Medical

College was accessed after getting the required permission
from scientific and Ethical committee of the Father Muller
Medical College, Mangalore. The Data related to Dengue
were stored as Electronic Medical Records (EMR). The case
sheets were scanned and stored in the Medical Records
Department repository. However, the analysis of data was
difficult. The corresponding patient history was accessed
through the IP number, that acts as a unique identifier for the
data that is stored in the Medical Records Department and the
data that is stored in the Registration department.

Fig. 1. Sample of Raw Data (Discharge Summary) that was extracted

from the MRD

D. Data Pre-processing

Major portion of the time in this research study was
spend in this Data pre-processing step. All the health data
thus collected go through Data pre-processing i.e., cleaning
process where unnecessary information was removed. With
the pre-processed data, we started finding patterns. We
collected N-grams from the data using speechPyspellchecker
package, which uses Levenshtein distance algorithm. The
following steps were performed over the real time data
collected from various Data sources related to Vector Borne
diseases. In the initial phase, we dealt with various data
quality issues. The initial data gathered is raw and usually not
in a format to run the required analysis. It contains missing
entries, inconsistencies, and semantic errors. After gathering
the data, we clean and transform the data by manually editing
it in the spreadsheet or by using Python. This step though
does not give us much meaningful patterns or insight,
however, consistently helps us to figure it out the right
assumptions that should be made. This helps us to apply right

Lattice

33

models that will assist in the important step of analysis. Data
after re-formatting can be converted to JSON, CSV or any
other format that makes it easy to load into one of our tools.

Exploratory data analysis forms an integral part at this
stage, as the summarization of the clean data can help identify
outliers, anomalies, and patterns that can become usable in
the subsequent steps. This is the step that answer the question
of the purpose for which data was collected. This phase
consists of four primary sub steps: Data Cleaning, Data
Integration, Data Transformation and Data Reduction.

1) Data Cleaning: Data cleaning helps in pre-
processing. This helps to handle missing data, noisy data,
detection and removal of outliers, minimizing duplication
and computed biases within the data.

2) Data Integration: Different health organizations give
us different data sources. These data sources must be
integrated, to a single data point which is uniform that can be
analyzed by the computer. In this case there were two types
of data provided from two departments. One from the
Registration department which gave us the demographic
information about the patient and other data from the medical
records department which gives information about the
treatment that was given.

3) Data Transformation: The data we collected was in
formats that are not optimal for processing. For example, if
dates are involved, the data must be formatted from text to
date format. In this state, we convert raw data into a useful
format that can be processed with mathematical libraries. In
this project the date of admission and date of discharge fields
are used to compute the number of days the patient was
admitted.

4) Data Reduction : Redundant data is identified and
removed. Any unnecessary data is removed. This ensures that
only valid data is used for processing.

E. Data Processing

The initial idea was to take screenshots of the patient
discharge sheets and to extract text from those images. Each
image which contained patient information from the day of
his/her arrival to the day of discharge was recorded. In order
to extract data from the images we used a python tool called
Python-Tesseract. Python-Tesseract is an optical character
recognition (OCR) tool for python. That is, it will recognize
and “read” the text embedded in images. Python- tesseract is
a wrapper for Google’s Tesseract-OCR Engine. It is also
useful as a stand-alone invocation script to tesseract, as it can
read all image types supported by the Pillow and Leptonica
imaging libraries, including jpeg, png, gif, bmp, tiff, and
others. All the images where run through the modified python
program and the image files where converted into text files
which contained all the textual information got from the
images. Still there was a challenge with respect to the
extracted files. Some of them had noise in them so the python
program couldn’t recognize the words in them and some of
the extracted data was wrong.

Data Dictionary is developed as part of the Data
processing in this project. This Data Dictionary was decided
based on the Domain expertise. As this project was dealing
with vector borne diseases such as Dengue and Malaria. The
physicians in the medical college hospital were discussed
about the Data to be captured from the clinical history that is
recorded in the medical records. All the data parameters that
has to be captured from the clinical history of the case files
were extracted based on the domain experts’ guidance. It acts
as a Metadata. The following Data Dictionary was created for
extracting information from the clinical files.

TABLE II. Features in the Data Dictionary

Diagnosis_Discharged_Improved Joint Pain

Diagnosis_Dengue Burning micturition

Fever Vomiting

Cold Chills

Cough Loose stools

Headache Nausea

Substance Abuse Pallor

Clubbing Lymphadenopathy

Breaths Per Minute Heart Beats Per Minute

Abdominal Pain IHD

Decreased Appetite Malaria

Diabetes Mellitus Diet

Hypertension Sleep

Tuberculosis Appetite

Asthma Bowel & Bladder

Icterus Cyanosis

Oedema Blood Pressure

Temperature -

III. RESULTS AND DISCUSSION
In this section the results that were derived out of the

experiment are explained. The Exploratory Data Analysis was
performed over the data that were collected. Few of the results
are presented below that were derived from the Data that was
collected from the Father Muller Medical College, Mangalore.

Fig. 2. Dengue positive and negative cases

A NONINVASIVE MODEL TO DETECT DENGUE BASED ON SYMPTOMS
USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

34

Fig. 3. Dengue cases with symptom of Headache

Fig. 4. Dengue cases with symptom of Cough

Fig. 5. Dengue cases with symptom of Vomiting

Fig. 6. Dengue cases with symptom of Fever

The data has now been enabled to perform any machine
learning tasks such as classification or prediction or regression
based on the need. There are various algorithms for each of
the tasks that are mentioned above. Since the task that we have
been trying to solve is a classification, we tried to find out the
different algorithms that can be used for building a model.
Before we start deciding the algorithm that should be used, we
split the dataset into two parts. Machine Learning algorithms,
or any algorithm for that matter, has to be first trained on the
data distribution available and then validated and tested before
it can be deployed to deal with real-world data. We tried using
Logistic Regression, Support Vector Machine,
KNeighborsClassifier and DecisionTreeClassifier for training
the model. The various values that were generated for
different metrics such as Accuracy, Precision, Recall and F-
Measure are displayed below.

Fig. 7. Performance comparison of different machine learning
algorithms without oversampling.

Fig. 8. Performance comparison of different machine learning algorithms
with oversampling

Fig. 9. Performance comparison of different machine learning algorithms
with SMOTE

IV. CONCLUSION
This research study based on clinical notes of the

patient, treated for Dengue, provides an insight into the
types of symptoms prior to hospital admission. It also
explores the efficiency of diagnostic treatment for
Dengue. The quicker a physician assesses based on the
symptoms, more effective the treatment tends to be. This
study was done with data collected from one specific
location. More data from different hospital setting and

Lattice

35

different places would increase the efficiency of the
System. However, the same steps that were performed
in the preprocessing stages can be repeated for any
hospital setting to gather data and transform the raw
clinical data into a meaningful data over which effective
AI based model can be built. Since the dataset that was
generated for this study was highly imbalanced, we studied
the impact of oversampling and Synthetic Minority
Oversampling Technique (SMOTE). Our experiments
reveal that, in comparison of the other over sampling
techniques, Decision Tree classifier gave the best result
(98% F1 micro score).

ACKNOWLEDGMENT

The authors would like to acknowledge, that this work was
done in the lab funded by Vision Group of science and
Technology (VGST), Government of Karnataka, under the
Grant scheme K- FIST(L2)-545 and the data was collected
from Father Muller Medical College Hospital, based on the
Ethics committee approval via protocol no:
126/19(FMMCIEC/CCM/149/2019) on 12.06.2019.

REFERENCES

[1] Guogang Rong, Arnaldo Mendez, Elie Bou Assi, Bo Zhao,

Mohamad Sawan. Artificial Intelligence in Healthcare: Review and
prediction case studies. Engineering (2020), 6(3), 291-301.

[2] J.Weng, J. McClelland, A.Pentland, O.Sporns, I. Stockman, M.Sur, et
al. Autonomous mental development by robots and animals. Science
(2020), 291(5504), 599-600.

[3] Limitations of Artificial Intelligence. [Accessed on September
27, 2020 at https://www.analyticsinsight.net/top-5-limitations-
artificial-intelligence].

[4] G.Huang, G.G.Huang, S.Song, K.You. Trends in extreme learning
machines: a review. Neural Network (2015), 61, 32-48.

[5] Y.Guo,Y.Liu, A.Oerlemans,S.Lao,S.Wu, M.S. Lew. Deep Learning
for visual understanding: a review. Neurocomputing (2016), 187, 27-
48.

[6] F. Javier Rodriquez – vera Y Marin, A Sanchez, C Borrachero, E pujal.
Illegible handwriting in medical records. Journal of the royal society of
medicine (2002), 95, 545-546.

[7] Bhatt S, Gething PW,Brady OJ, The global distribution and burden
of dengue. Nature (2013).496, 504-507.

[8] Rashmi Sharma,”Epidemiological Investigation Of Malaria Outbreak
In Village Santej, District Gandhi Nagar (Gujarat)”,Indian J. Prev. Soc.
Med. Vol. 37 No. 3& 4 , 2006

[9] George T, Jakribetta RP, Yesudhas S,Thaliath A,Pais MLJ, Abraham
S, Baliga MS. Trend analysis of dengue in greater mangalore region
of karnataka india:observations from a tertiary care hospital.
International Journal of Applied Research (2018),4(6),92-96.

[10] Sundram BM, Raja DB, Mydin F, Yee TC, Raj K. Utilizing Artificial
Intelligence as a Dengue Survellance and prediction tool. J Appl
Bioinforma Comput Biol (2019), 8:1.

[11] Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-
Rejon JE,Gomez-carro S,Farfan-Ale J, Savic DA,Muller-Karger FE.
Application of Artificial Neural Networks for dengue fever outbreak
predictions in the Northwest Coast of Yucaton,Mexico and San Juan,
Puerto Rico. Trop. Med. Infect. Dist(2018)3-5.

[12] Baruah J, Ananda S, Arun kumar G.Incidence of dengue in a tertiary
care centre-Kasturba Hospital, Manipal. Indian J Pathol
Microbiol(2006).49(3),462-3.

[13] Pai Jakribettu R, Boloor R, Thaliath A, Yesudasan George S, George
T, Ponadka Rai M et al. Correlation of Cinicohaematological
parameters in paediatric Dengue: A retrospective study. J Trop Med
(2015).6(47), 162.

[14] Damodar T, Dias M, Mani R, Shipla KA, anand AM, Ravi V et al.
clinical and laboratory profile of dengue viral infections in and around
mangalore. Indian J Med Microbiol(2017), 35(2), 256-261.

[15] Blagus and Lusa: SMOTE for high-dimensional classimbalanced data.
BMC Bioinformatics 2013 14:106.

[16] Symptoms of Dengue [Accessed on October
3rd 2020, https://www.cdc.gov/dengue/symptoms/index.html]

[17] ICD code for Dengue [Accessed on September 21st 2020,
https://icd.codes/icd10cm/A90] [18]Symptoms of Malaria
[Accessed on September 24th 2020,
https://www.healthline.com/health/malaria#diagnosis].

A NONINVASIVE MODEL TO DETECT DENGUE BASED ON SYMPTOMS
USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

36

Efficient and Optimal Deep Learning Inference for
Computer Vision Applications

Venkatesh Wadawadagi
Solution Consultant - AI/ML, Engineering and Analytics

Sahaj Software Solutions

Bengaluru, India
venkateshw@sahaj.ai

Abstract— Journey of a cognitive solution is meaningful when
it's put to use or can actually solve business problems in real time
through inference. Deep Learning model Inference is as
important as model training and especially when it comes to
deploying cognitive solutions on the edge, inference becomes a lot
more critical as it also controls the performance and accuracy of
the implemented solution. For a given computer vision
application, once the deep learning model is trained, the next step
would be to ensure it is deployment/production ready, which
requires application and model to be efficient and reliable. It's
very essential to maintain a healthy balance between model
performance/accuracy and inference time. Inference time decides
the running cost for “on the cloud” solutions and cost optimal
“on the edge” solutions come with processing speed and memory
constraints, so it's important to have memory optimal and real
time (lower processing time) deep learning models. With the
rising use of Augmented Reality, Facial Recognition, Facial
Authentication and Voice assistants that require real time
processing, developers are looking for newer and more effective
ways of reducing the size/memory and amount of compute
required for the application of neural networks.

Keywords— Accuracy, Inference time, On the edge

I. INTRODUCTION
Recent machine learning methods use increasingly large

Deep Neural Networks(DNNs) to achieve state of the art
results in various tasks. The gains in performance come at the
cost of a substantial increase in computation and storage
requirements. This makes real-time implementations on limited
resources hardware a challenging task. DNNs proved to be
extremely effective in solving a broad variety of problems in
computer vision. Deep learning methods are usually evaluated
only according to their accuracy over a given task. This
criterion leads to the development of architectures with
constantly increasing computational complexity and memory
requirements. Thus, performing inference on low power
System on a Chip (SoCs) used in smartphones or IoT devices is
a significant challenge, due to the limited available memory
and computational resources.

Large-scale datasets, high-end modern GPUs and new
network architectures allow the development of unprecedented
large CNN models. For instance, from AlexNet [1], VGGNet
[2] and GoogleNet [3] to ResNets [4], the ImageNet
Classification Challenge winner models have evolved from 8
layers to more than 100 layers. However, larger CNNs,
although with stronger representation power, are more

resource-hungry. For instance, a 152-layer ResNet [14] has
more than 60 million parameters and requires more than 20
Giga float-point-operations (FLOPs) when inferencing an
image with resolution 224×224. This is unlikely to be
affordable on resource constrained platforms.

Over the years several approaches have been proposed in
order to make DNNs less resource demanding. These
approaches include Quantization of neural networks, Network
pruning and Matrix factorisation via low-rank approximation
of neural networks. Other ways of running optimal deep
learning inferences include leveraging DNN inference
accelerator frameworks and libraries. There are tools and
libraries that have been developed to cater to run optimal
inference on the edge and mobile devices.

II. BACKGROUND
Convolutional neural network (CNN) is a type of artificial

neural network that has been successfully applied in many ar-
eas, especially in visual imagery [24]. A convolutional neural
network consists of three building blocks: convolutional layer,
pooling layer and fully-connected layer. A simple
convolutional neural network is shown in Fig 1.

Figure 1: An illustration of convolutional neural networks.

Convolutional layer is a major building block of CNNs. It is
used to extract features from images. In each convolutional
layer we have a set of filters. During the forward pass, we
slide each filter across the image and compute dot products

LatticeEFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

Lattice

37

between the filter and the local receptive field. The output of
the convolutional layer is called activation map that gives the
response of each filter. Given an image and a x filter ,
an element in the activation map can be computed as,

The convolution operation is computationally very expen-
sive. For example, the total time complexity of all convolu-

tional layers can be expressed as O() [25].

Here is the index of a convolutional layer and is the
number of convolutional layers. is the number of filters in
the -th layer. is the number of input channels of the -th
layer. is the spatial size of the filter. is the spatial size of
the activation map. The computational cost of the
convolutional layer motivates us to use low bit-width filters
and inputs. With low bit-width filters and inputs, the dot
product can be efficiently implemented by bitwise operations
which can greatly accelerate the computation.

III. QUANTIZATION OF NEURAL NETWORKS
Quantization is recognised as one of the most effective

approaches to satisfy the extreme memory requirements that
deep neural network models demand. Instead of adopting 32-
bit floating point format to represent weights, quantized
representations store weights using more compact formats such
as integers or even binary numbers. Despite a possible
degradation in predictive performance, quantization provides a
potential solution to greatly reduce the model size and the
energy consumption.

Quantizing neural networks dates back to the 1990s
[5;6;7;8]. In the early days, the main reason to quantize these
models is to make it easier for digital hardware
implementation. Recently, the research of quantizing neural
networks has revived due to the success of deep neural
networks and their huge sizes. A slew of new quantization
methods and methodologies have been proposed. These efforts
have enabled the quantized neural networks to have the same
accuracy level as their full-precision counterparts.

Quantization methods attempt to reduce the precision of the
NN parameters and/or activations from single precision (32 bit
floating point, or FP32) to lower bit representations. Several
benefits of low-bit precision can be exploited by deep learning
accelerators. The storage requirement for a low-bit precision
model can be diminished substantially, as well as the power
consumption. Similarly, the memory bandwidth requirements
can be significantly reduced. Since the multiply accumulate
(MAC) operations are performed on low-bit processing
engines, the computational complexity can be reduced as well.
Perhaps the most important benefit of low bit representation is
the saving of chip area. For instance, 8 bits integer (INT8)
operations can save up to 30x energy and up to 116x area
compared to FP32 operations [9], allowing significantly better
computational throughput. However, low-bit precision
inference often causes loss of the task accuracy, which is

usually compensated with the help of heavy full retraining,
mixed precision or non-uniform quantization.

Using a rounding function is an easy way to convert real
values into quantized values. However, the network per-
formance may drop dramatically after each rounding opera-
tion. It is necessary to keep the real values as reference during
training which increases the memory overhead. Meanwhile,
since the parameter space is much smaller if we use discrete
values, it is harder for the training process to converge. Fi-
nally, rounding operation cannot exploit the structural infor-
mation of the weights in the network.

There are two main quantization scenarios. The first one is
the full training of a given model to a desired lower bit
precision. With this approach, the weights, the activations and
even the gradients can be quantized to very low precision,
enabling potentially fast training and inference [10]. The major
problem with the training approach above arises from the
discreetness of the parameters, wherein the back-propagation
approach is not well defined. The ”straight-through
estimator” [11] has been used in [12, 13, 14] in order to
estimate the gradient of a stochastic neuron. [12] proposed to
use stochastic quantization of the weights via random
rounding, in order to inject regularising noise to the training
process. [15] suggests to approximate solution using
variational Bayes method where the weights can be restricted
to discrete values assuming Gaussian distribution. Instead of
seeking for appropriate derivatives, [16] assumed smooth
approximation of parameters with defined gradients. Non-
uniform quantization of NN parameters has been proposed in
[17] where the param- eters are approximated using k-means
algorithm. [18] pro- posed a high order quantization scheme of
weights where the approximation residual is further processed
allowing better refinement of full precision input. Estimation of
the quantization parameters by solving constrained
optimisation problem has been proposed for binary [13] and
ternary weights [19].

Second quantization scenario targets direct quantization of
a pre-trained FP32 network to a lower bit-depth precision
without full training. INT8 quantization of parameters has been
proven to be relatively robust to quantization noise even with
simple uniform quantization of weights [20]. [21] proposed L2
error minimisation of weights via alternating optimisation in
order to obtain a generalising ability during the training.
Nevertheless, INT8 quantization of the network activations is
more challenging because of real time constraints. Nvidia
proposed in TensorRT [22] a quantization framework that
searches for saturation threshold of the activations, based on
the Kullback-Leibler divergence measure between the
quantized activations and their full precision counterpart.
Recently, [23] pro- posed to approximate activations, as if they
were sampled from a known distribution in order to obtain,
under some assumptions, analytically optimal threshold in the
L2 sense. However, quantization of full precision weights and
activations to less than 8-bits usually causes significant loss of
accuracy, a problem that has not been solved yet. In order to
overcome such degradation in performance, quantization
frameworks resort to retraining procedures, mixed precision
solutions or non-uniform quantization. These solutions make
fast and easy deployment of quantized NNs impossible,
especially on highly constrained HW such as mobiles or IoT
devices.

I m n F
ai, j

d

∑
l=1

nl−1 . s2
l . nl . m2

l

l d
nl

l nl−1 l
sl ml

EFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

38

A. Weight Quantization
The motivation to quantize weights is clear: to reduce

model size and accelerate training and inference process. Most
of the methods we talked above can be used to quantize
weights. In this section, we introduce more weight quantization
strategies that we did not cover before. [26] proposed a layer-
wise quantization scheme to reduce the performance
degradation. In [27], the authors adopted a two-step pipeline.
In the first step, the weights are compressed into the range of
[−1, 1] and in the second step the compressed weights are used
to initialize the parameters of a binary network. In [28], the
authors proposed incremental network quantization (INQ)
which consists of three steps: weight partition, group-wise
quantization and re-training. They quantized the weights in a
group-wise manner to allow some groups of weights to
compensate the accuracy loss due to the quantization of other
groups. The work in [29] extended this method to power-of-
two setting.

In [30] the authors tried to find the optimal fixed point bit-
width allocation across layers. They examined how much noise
can be introduced by quantizing different layers. [30]
approximated the full-precision weights with a linear
combination of multiple binary bases. The results show that it
is the first time that a binary neural network can achieve
prediction accuracy comparable to its full-precision counterpart
on ImageNet dataset. In [31], the authors studied how to
develop energy efficient quantized neural network. The work in
[32] introduced network sketching to quantize a pre-trained
model. The idea is to use binary basis to approximate pre-
trained filters. They first proposed a heuristic algorithm to find
the binary basis and then provided a refined version to better
approximation. In [33], the authors proposed an end-to-end
training framework to optimize original loss function,
quantization error and the total number of bits simultaneously.
However, the accuracy is not comparable to other quantized
neural networks.

There are few challenges associated with quantization of
weights. Quantized weights make neural networks harder to
con- verge. A smaller learning rate is needed to ensure the
network to have good performance [34]. Determine how to
control the stability of the training process in a quantized
neural network with quantized weights is critical.

Quantized weights make back-propagation infeasible since
gradient cannot back-propagate through discrete neurons.
Approximation methods are needed to estimate the the
gradients of the loss function with respect to the input of the
discrete neurons. Developing low-variance, unbiased gradient
estimates is essential for the success of weight quantization. It
is known that the weights in neural networks often follow some
general structures. For an approach that trains quantized
networks from scratch, how to quantize the weights locally
while maintain their global structure is an issue.

B. Activation Quantization
 Quantized activations can replace inner-products with binary
operations which can further speed up the network training.
We can also reduce the much memory by avoiding full-
precision activations. [35] quantized the activations to 8 bits.
They used a sigmoid function which limits the activations to
the range of [0, 1] and quantized the activations after training
the network. In [12;13;10] the authors adopted a similar

approach. They introduced a continuous approximation of the
non-differentiable operator during back-propagation to enable
the gradients can back-propagate through the discrete neurons.
More recently, [36] proposed an half-wave Gaussian quantizer
to approximate the ReLU unit. In the forward approximation,
they used a half- wave Gaussian quantization function,

 (2)

If use mean squared error to measure the performance, the
optimal quantizers can be found as follows,

 (3)

They used batch normalization [37] and Lloyd’s algorithm to
find the optimal solution. During back-propagation, they
further introduced three possible approximation method to
avoid the gradient vanishing problem.
 In [Mishra et al., 2017], the authors proposed wide reduced
precision networks (WRPN) to quantize activation and
weights. They found that activations actually occupy more
memory than weights. They adopted a strategy that increases
the number of filters in each layer to compensate the accuracy
degradation due to quantization.
There are some reasons that make the quantization of ac-
tivations more difficult than that of weights [36]. The first one
is that we need to back-propagate through the non-
differentiable operators. Consider the back-propagation
equation,

 (4)

When we replace with a binary operator, the derivative
 is almost zero everywhere which makes gradient

descent algorithm infeasible. The quantized activations can
lead to “gradient mismatch” problem [38] which means that
there is a discrepancy between the quantized activation with
the computed backward gradient.

C. Gradient Quantization
Gradient quantization is a new branch of research in quan-

tization of neural networks. The motivation to quantize gra-
dients is to reduce the communication cost during distributed
stochastic gradient descent (SGD) training of large neural net-
works. The magnitude and sign of gradients are both important
for updating the weights. To quantize gradients, we must
address the question of how to take both factors into account. A
naive way to quantize gradients may not work well in practice
since it may violate the conditions needed for stochastic
gradient descent algorithm to converge. More sophisticated
methods are needed in this case.

g (aj)
g′ (aj)

LatticeEFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

Lattice

39

IV. PRUNING OF NEURAL NETWORKS
 While modern deep CNNs are composed of a variety of
layer types, runtime during prediction is dominated by the
evaluation of convolutional layers. With the goal of speeding
up inference, we can prune feature maps so that resulting
networks may be run efficiently. Pruning is a popular
approach to reduce a heavy network to obtain a light-weight
form by removing redundancy in the heavy network. Simply
put, pruning is a way to reduce the size of the neural network
through compression.

 Pruning neural networks is an old idea going back to 1990
(with Yan Lecun’s optimal brain damage work) and before.
These early works [40;39] performed pruning using a second
order Taylor approximation of the increase in the loss function
of the network when a weight is set to zero.

 The idea is that among the many parameters in the network,
some are redundant and don’t contribute a lot to the output.

Figure 2: An illustration of neurons before and after pruning.

 Neural networks generally look like the one on the left as
shown in figure-2: every neuron in the layer below has a
connection to the layer above, but this means that we have to
multiply a lot of floats together. Ideally, we’d only connect
each neuron to a few others and save on doing some of the
multiplications; this is called a sparse network.

 If you could rank the neurons in the network according to
how much they contribute, you could then remove the low
ranking neurons from the network, resulting in a smaller and
faster network (the one on the right side as shown in
figure-2) .

 The ranking, for example, can be done according to the L1/
L2 norm of neuron weights. After the pruning, the accuracy
will drop (hopefully not too much if the ranking is clever), and
the network is usually trained-pruned-trained-pruned
iteratively to recover. If we prune too much at once, the
network might be damaged so much it won’t be able to
recover. So in practice, this is an iterative process — often
called ‘Iterative Pruning’: Prune / Train / Repeat.

Figure 3: Network pruning as a backward filter [41].

A. Unstructured Pruning
 These methods prune individual parameters. Doing so
produces a sparse neural network, which although smaller in
terms of parameter count may not be arranged in a fashion
conducive to speedups using modern libraries and hardware. It
is also called Weight Pruning as we set individual weights in
the weight matrix to zero. This corresponds to deleting
connections as in the figure-2 [42] [40]. Here, to achieve
sparsity of k% we rank the individual weights in weight
matrix according to their magnitude, and then set to zero
the smallest k%.

B. Structured Pruning
 These methods consider parameters in groups, removing
entire neurons, filters, or channels to exploit hardware and
software optimized for dense computation. It is also called
Unit/Neuron Pruning as we set entire columns in the weight
matrix to zero, in effect deleting the corresponding output
neuron.

 In [43] method they advocate pruning entire convolutional
filters. Pruning a filter with index affects the layer it resides
in, and the following layer. All the input channels at index ,
in the following layer, will have to be removed, since they
won’t exist any more after the pruning.

W

k
k

EFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

40

Figure 4: Pruning filters for efficient convnets [43]

 In case the following layer is a fully connected layer, and the
size of the feature map of that channel would be , then

 neurons be removed from the fully connected layer.
The neuron ranking in this work is fairly simple. It’s the L1
norm of the weights of each filter. At each pruning iteration
they rank all the filters, prune the lowest ranking filters
globally among all the layers, retrain and repeat.

C. Evaluating Pruning
 Pruning can accomplish many different goals, including
reducing the storage footprint of the neural network, the
computational cost of inference, the energy requirements of
inference etc. Each of these goals favours different design
choices and requires different evaluation metrics. For
example, when reducing the storage footprint of the network,
all parameters can be treated equally, meaning one should
evaluate the overall compression ratio achieved by pruning.
However, when reducing the computational cost of inference,
different parameters may have different impacts. For instance,
in convolutional layers, filters applied to spatially larger inputs
are associated with more computation than those applied to
smaller inputs.

 Figure 5: Pruning of feature maps in VGG-16 fine-tuned on
the Birds-200 dataset [43]

Figure 6: Pruning filters for efficient convnets [43]

 Regardless of the goal, pruning imposes a tradeoff between
model efficiency and quality, with pruning increasing the

former while (typically) decreasing the latter. This means that
a pruning method is best characterised not by a single model it
has pruned, but by a family of models corresponding to
different points on the efficiency-quality curve.

V. LOW-RANK FACTORIZATION
This method approximates weight matrix in neural

networks with low-rank matrix using techniques like Singular
value decomposition (SVD), QR decomposition with column
pivoting, rank revealing QR factorization (RRQR),
Interpolative decomposition etc. These methods work
especially well on fully-connected layers, yielding ∼3x model-
size compression however without notable speed acceleration,
since computing operations in CNN mainly come from
convolutional layers. These techniques are very expensive
(operations are required for matrices). There are
several randomized algorithms available in the literature which
are not so expensive as the classical techniques (but the
complexity is not linear in). So, it is very expensive to
construct the low rank approximation of a matrix if the
dimension of the matrix is very large. There are alternative
techniques like Cross/Skeleton approximation which gives the
low-rank approximation with linear complexity in .

In [44] the authors exploit the linear structure present
within the convolutional filters in order to develop
approximations which reduce the computations. The report the
2x speedup for a layer with 1% accuracy drop on classification
task. In [45] the cross-channel or filter redundancy was
exploited for construction the low-rank basis of filters. The
developed methods showed the 4.5x compression with less
than 1% drop in classification accuracy. Continuing to work in
the similar direction, Lebedev et al. in their research [46]
applied low-rank CPD on order-4 convolution kernel tensor.
The experiments conducted in this paper demonstrated 8.5x
CPU speedup with 1% accuracy drop for the 36-class character
classification CNN and 4x speedup of second layer of the
AlexNet[1] for ImageNet classification [47]. The paper [48]
presents the one-shot whole CNN compression scheme based
on the Tucker decomposition. Authors also describe the rank
selection method with the help of variational Bayesian matrix
factorization (VBMF) [49]. Another tensor decomposition -
tensor-train decomposition - is used in [50] for converting the
weight matrices of the fully-connected layers to the TT-format.
TT-decomposition is also used in [51]. In this work both
convolutional and fully-connected layers are compressed with
TT-decomposition. The significant compression ratio of 80x is
achieved with 1.1% accuracy drop on the CIFAR-10
classification. The most famous tensor decompositions are
Canonical Polyadic (CPD) [52], Tucker decomposition [53]
and tensor-train decomposition [54]. The Tucker tensor format
is chosen for the low-rank approximation of convolutional
weights.

VI. INFERENCE ACCELERATORS

A. TensorRT
If you want to get the best performance out of your GPUs,

NVIDIA offers TensorRT, a model compiler for inference

M X N
M X N

m

O (n3) n x n

n

n

LatticeEFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

Lattice

41

deployment. It does additional optimizations to a trained
model, and a full list is available on NVIDIA’s TensorRT
website. Key optimizations include quantization and graph
fusion. Quantization reduces model precision from FP32
(single precision) to FP16 (half precision) or INT8 (8-bit
integer precision). Graph fusion fuses multiple layers/ops
into a single function call to a CUDA kernel on the GPU.
This reduces the overhead of multiple function call for each
layer/op.

Deploying with FP16 is straight forward with NVIDIA
TensorRT. The TensorRT compiler will automatically
quantize your models during the compilation step. To deploy
with INT8 precision, the weights and activations of the
model need to be quantized so that floating point values can
be converted into integers using appropriate ranges. You have
two options. In first option you need to perform quantization
aware training, where-in the error from quantizing weights
and tensors to INT8 is modelled during training, allowing the
model to adapt and mitigate this error. This requires
additional setup during training. Second option is about
performing post training quantization. In post-quantization
training, no pre-deployment preparation is required. You will
provide a training model in full precision (FP32), and you
will also need to provide a dataset sample from your training
dataset that the TensorRT compiler can use to run a
calibration step to generate quantization ranges.

 Figure 7: Comparison of accuracy and performance of
TensorFlow ResNet50 inference.

VII. INFERENCE LIBRARIES FOR EDGE/MOBILE DEVICES

A. tkDNN

 tkDNN[55] is a Deep Neural Network library built with
cuDNN and tensorRT primitives, specifically thought to work
on NVIDIA Jetson Boards. It has been tested on TK1(branch
cudnn2), TX1, TX2, AGX Xavier, Nano and several discrete

GPUs. The main goal of this project is to exploit NVIDIA
boards as much as possible to obtain the best inference
performance. It does not allow training.

Figure 8: Inference FPS of yolov4 with tkDNN, average of
1200 images with the same dimension as the input size, on
RTX 2080Ti (CUDA 10.2, TensorRT 7.0.0, Cudnn 7.6.5);
Xavier AGX, Jetpack 4.3 (CUDA 10.0, CUDNN 7.6.3, tensorrt
6.0.1); Xavier NX, Jetpack 4.4 (CUDA 10.2, CUDNN 8.0.0,
tensorrt 7.1.0); Tx2, Jetpack 4.2 (CUDA 10.0, CUDNN 7.3.1,
tensorrt 5.0.6); Jetson Nano, Jetpack 4.4 (CUDA 10.2,
CUDNN 8.0.0, tensorrt 7.1.0).

Steps needed to do inference on tkDNN with a custom neural
network.

• Build and train a NN model with your favorite
framework.

• Export weights and bias for each layer and save them
in a binary file (one for layer).

• Export outputs for each layer and save them in a
binary file (one for layer).

• Create a new test and define the network, layer by
layer using the weights extracted and the output to
check the results.

• Do inference.

B. TFLite

 On-device machine learning (ML) offers a variety of
benefits. The most apparent is the improved inference la-
tency: By skipping the data upload to the server and wait- time
for the inference result, the app can respond more quickly to
the user’s request.

 TFLite is a fast inference engine that leverages the mobile
GPU, a ubiquitous hardware accelerator on virtually every
phone, we can achieve real-time performance for various deep
network models. Figure-9 demonstrates that GPU has
significantly more compute power than CPU.

EFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

42

Figure 9: Example of available compute power on mobile in
gigaflops (billion floating point instructions per second). FP16
and FP32 refer to 16-bit and 32-bit floating point arithmetic,
respectively[56].

 TFLite GPU leverages the mobile GPU with OpenGL ES
for Android devices and Metal for iOS devices. The specific
version requirements are OpenGL ES 3.1+ and iOS 9+ which
are available for more than 52% of all Android devices [57].
One of the biggest strength of TFLite framework is that it
employs open standards, i.e. is not limited by specific
hardware vendor, and thus covers a wide range of devices.

Figure 10: TFLite’s delegate mechanism: Operations
supported by the GPU delegate will run on the GPU, and the
rest on the CPU[56].

 The inference phase is fairly straightforward. The input
tensors are reshaped to the PHWC4 format, if their tensor
shape has channel size not equal to 4. For each operator,
shader programs are linked by binding resources such the
operator’s input/output tensors, weights, etc. and dispatched,
i.e. inserted into the command queue. The GPU driver then
takes care of scheduling and executing all shader programs in
the queue, and makes the result avail- able to the CPU by the
CPU/GPU synchronization. There might be a final conversion
from PHWC4 to HWC, if the output tensor has a channel size
not equal to 4.
 For maximum performance, one should avoid CPU/GPU
synchronization at all cost, and preferably, never leave GPU
context if real-time processing is needed. The most ideal
scenario would be the following: A camera provides with
RGBA texture that goes directly to TFLite GPU and the output
of the network is then directly rendered to the screen.

Figure 11: Average inference latency (in milliseconds) of
TFLite GPU (orange) compared to CPU (gray) on various
neural networks, run on a variety of smartphones (best viewed
in color).

 Figure-11 illustrates the performance of GPU
inference compared to CPU inference in TFLite for various
neural networks which generally demonstrates a 2–9×
speedup. The first 10 warm-up runs were skipped for
benchmarking and averages are based on the 100 subsequent
inferences. This profiling revealed that TFLite GPU is often
bound by memory bandwidth and we typically only see 20–
40% ALU utilization. On iOS devices, we benefit from larger
cache sizes that result in reduced memory I/O latency, and
hence, better performance than the OpenGL backend.

VIII. CONCLUSION

 As more and more applications find use with neural
networks, lightweight algorithms are the need of the hour. The
most recent example of this comes in the form of Apple’s new
products, which use neural networking to ensure a multitude
of privacy and security features across products. Owing to the
disruptive nature of the technology, it is easy to see its
adoption by various companies.

REFERENCES

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”, 2012.

2. K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

3. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
et al. Going deeper with convolutions. In CVPR, pages 1–9, 2015.

LatticeEFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

Lattice

43

4. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016.

5. Emile Fiesler, Amar Choudry, and H John Caulfield, “Weight
discretization paradigm for optical neural networks”, 1990.

6. Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and Kazuo Kyuma,
“Weight quantization in boltzmann machines”, 1991.

7. Chuan Zhang Tang and Hon Keung Kwan, “Multilayer feedforward
neural networks with single powers-of-two weights”, 1993.

8. Michele Marchesi, Gianni Orlandi, Francesco Piazza, and Aurelio
Uncini, “Fast neural networks without multipliers”, 1993.

9. W.Dally.High-performance hardware for machine learning. In Tutorial in
Advances in Neural Information Processing Systems, 2015.

10. S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients. arXiv preprint arXiv:1606.06160, 2016.

11. Y.Bengio, N.Leonard, and A.Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation”, 2013.

12. M. Courbariaux, Y. Bengio, and J.P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations”, 2015.

13. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In
European Conference on Computer Vision, pages 525–542. Springer,
2016.

14. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to + 1 or -1”, 2016.

15. D. Soudry, I. Hubara, and R. Meir. Expectation backpropagation:
Parameter-free training of multilayer neural networks with continuous or
discrete weights. In Advances in Neural Information Processing
Systems, pages 963–971, 2014.

16. O. Shayar, D. Levi, and E. Fetaya. Learning discrete weights using the
local reparameterization trick. arXiv preprint arXiv:1710.07739, 2017.

17. Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compress- ing deep
convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

18. Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Performance guaranteed
network acceleration via high-order residual quantization. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2603–
2611. IEEE, 2017.

19. F. Li and B. Liu. Ternary weight networks. CoRR, abs/1605.04711,
2016.

20. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. arXiv preprint
arXiv:1712.05877, 2017.

21. K. Hwang and W. Sung. Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS),
2014 IEEE Workshop on, pages 1–6. IEEE, 2014.

22. S. Migacz. 8-bits inference with tensorrt. In GPU Technology
Conference, 2017.

23. R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry. Aciq, “Analytical
clipping for integer quantization of neural networks”, 2018.

24. Yann LeCun, Le ́on Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition”, 1998.

25. Kaiming He and Jian Sun, “Convolutional neural networks at
constrained time cost”, 2015..

26. Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung, “Fixed point
optimization of deep convolutional neural networks for object
recognition”, 2015.

27. Minje Kim and Paris Smaragdis, “Bitwise neural networks”,
arXiv:1601.06071, 2016.

28. Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen,
“Incremental network quantization: Towards cnns with low-precision
weights”, 2017.

29. Denis A Gudovskiy and Luca Rigazio, “Shiftcnn: Generalized low-
precision architecture for inference of convolutional neural networks”,
2017.

30. Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy, “Fixed point
quantization of deep convolutional networks”, 2016.

31. Bert Moons, Koen Goetschalckx, Nick Van Berckelaer, and Marian
Verhelst, “Minimum energy quantized neural networks”, 2017.

32. Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen, “Network
sketching: Exploiting binary structure in deep cnns”, 2017.

33. Graham W. Taylor Sek Chai Mohamed Amer, Aswin Raghavan, “Bit-
regularized optimization of neural nets”, 2018.

34. Wu Shuang, Li Guoqi, Shi Luping, and Chen Feng, “Training and
inference with integers in deep neural networks”, 2018.

35. Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. “Improving the
speed of neural networks on cpus”, 2011.

36. Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos, “Deep
learning with low precision by half-wave gaussian quantization”, 2017.

37. Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”, 2015.

38. Darryl D Lin and Sachin S Talathi. “Overcoming challenges in fixed
point training of deep con- volutional networks”, 2016.

39. Babak Hassibi and David G Stork, “Second order derivatives for
network pruning: Optimal brain surgeon”, In NIPS, 1993.

40. Yann LeCun, John S Denker, and Sara A Solla, “Optimal brain damage”,
In NIPS, 1990.

41. 1611.06440 Pruning Convolutional Neural Networks for Resource
Efficient Inference .

42. Song Han, Huizi Mao, and William J Dally, “Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding”, arXiv preprint arXiv:1510.00149, 2015.

43. Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter
Graf ,“Pruning filters for efficient convnets ”, 2016.

44. E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
2014.

45. M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” 2014.

46. V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky,
“Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” 2014.

47. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” 2014.

48. Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin,
“Compression of deep convolutional neural networks for fast and low
power mobile applications,” 2015.

49. S. Nakajima, M. Sugiyama, and S. D. Babacan, “Global solution of
fully-observed variational bayesian matrix factorization is column-wise
independent”, 2011.

50. A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing
neural networks,” 2015.

51. T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ultimate
tensorization: compressing convolutional and fc layers alike,” 2016.

52. F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way
matrix or tensor,” Journal of Mathematics and Physics, vol. 7, no. 1-4,
pp. 39–79, 1928.

53. L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, pp. 279–311, 1966c.

54. I. Oseledets, “Tensor-train decomposition,” SIAM J. Scientific
Computing, vol. 33, pp. 2295–2317, 01 2011.

55. Verucchi et al., “A Systematic Assessment of Embedded Neural
Networks for Object Detection”, 2020.

56. Juhyun Lee et al., “On-Device Neural Net Inference with Mobile
GPUs”, 2019.

57. Carole-JeanWu et al., “Machine Learning at Facebook: Understanding
Inference at the Edge. In IEEE International Symposium on High-
Performance Computer Architecture”, 2019.

EFFICIENT AND OPTIMAL DEEP LEARNING INFERENCE FOR COMPUTER
VISION APPLICATIONS

44

Classification of different plant leaf diseases using

multiple convolutional neural network and image pre-
processing

Tharani D Preetha M

Student: Department of Computer Science and Engineering Associate Professor: Department of Computer Science and
Engineering

SA Engineering College SA Engineering College
Chennai 600077, India Chennai 600077, India

tharanidurairaj@gmail.com preetha@saec.ac.in

Abstract - The recognizable proof of plant sickness is the reason
of the counteraction of plant infection proficiently and definitely
in the unpredictable climate. This causes huge degree demolition
of harvests, reduces advancement and eventually prompts money
related loss of farmers. In view of quick improvement in
grouping of ailments and adequate data on farmer, recognizing
verification and treatment of the ailment has become a huge test.
The leaves have surface and visual resemblances which credits
for conspicuous verification of sickness type. Therefore, PC
vision used with significant learning gives the best way to deal
with tackle this issue. This paper proposes a significant learning-
based model which is readied using Plantvillage dataset
containing pictures of strong and undesirable yield leaves. The
model serves its objective by organizing pictures of leaves into
unfortunate class reliant on the case of flaw. Utilizing a
Plantvillage dataset of 3900 pictures of ailing and solid plant
leaves gathered under controlled conditions, we train a profound
convolutional neural organization to distinguish 11 yield species
and 26 illnesses (or nonappearance thereof). Batch Normalization
is performed to forestall network over-fitting while at the same
time upgrading the heartiness of the model. Prelu activation
function and Adam optimizer are utilized to improve both
assembly and exactness. The prepared model accomplishes a
precision of 98.74% on a held-out test set, showing the
achievability of this methodology.
Index Terms - Plantvillage dataset, CNN, Batch Normalization,
Activation function, Adam optimizer.

 I. INTRODUCTION

The issue of productive plant sickness assurance is firmly
identified with the issues of manageable agribusiness and
environmental change. Examination results show that
environmental change can adjust stages and paces of
microorganism advancement; it can likewise alter have
opposition, which prompts physiological changes of host-
microbe cooperation’s. The circumstance is additionally
confounded by the way that, today, sicknesses are moved
internationally more effectively than any other time. New
illnesses can happen in spots where they were beforehand
unidentified and, inalienably, where there is no neighbourhood
mastery to battle them.
Unpractised pesticide use can cause the improvement of long-
haul opposition of the microorganisms, seriously diminishing

the capacity to retaliate. Opportune and exact finding of plant
sicknesses is one of the mainstays of exactness horticulture. It
is vital to forestall pointless misuse of monetary and different
assets, along these lines accomplishing more beneficial
creation, by tending to the drawn-out microbe obstruction
improvement issue and moderating the negative impacts of
environmental change.
In this evolving climate, proper and ideal illness distinguishing
proof including early avoidance has never been more
significant. There are a few different ways to recognize plant
pathologies. A few illnesses don't have any obvious
manifestations, or the impact gets observable past the point
where it is possible to act, and in those circumstances, a
refined investigation is compulsory. Nonetheless, most
infections create some sort of indication in the noticeable
range, so the unaided eye assessment of a prepared proficient
is the prime method embraced practically speaking for plant
sickness discovery. To accomplish exact plant infection
diagnostics a plant pathologist ought to have great perception
abilities with the goal that one can recognize trademark
indications. Varieties in manifestations demonstrated by ailing
plants may prompt an inappropriate determination since
beginner cultivators and specialists could have a bigger
number of challenges deciding it than an expert plant
pathologist. A robotized framework intended to help recognize
plant sicknesses by the plant's appearance and visual side
effects could be of extraordinary assistance to novices in the
cultivating cycle and furthermore prepared experts as a check
framework in infection diagnostics.
 II. LITRATURE SURVEY
[1]YANG ZHANG, CHENGLONG SONG, AND
DONGWEN ZHANG proposed Faster RCNN calculation to
distinguish ailing tomato leaves, which can both perceive
tomato infections and distinguish tomato leaf areas. To make
the anchors in the calculation closer to the ground reality of
dataset, utilized the k-means calculation to group the
bouncing boxes of tomato infection pictures and improve the
anchors dependent on the outcomes. ResNet101 is used for
feature extraction, which can separate the profound highlights
of tomato illness. The test results show that strategy can

LatticeCLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

Lattice

45

viably distinguish and perceive tomato infections and has
higher location precision of 98.54%.
 [2] JIANG HUIXIAN proposed plants image recognition 50
plant leaf information bases are endeavored and separated and
KNN-based zone gathering, Kohonen network dependent on
self- sorting out part organizing assessment and SVM- based
help vector machine. At the same time, the leaves of 7
different plants were looked at and it was discovered that
ginkgo leaves were simpler to perceive. For leaf pictures
under complex foundation, phenomenal confirmation
influence has been refined. Picture preliminary of the test set
are input into the learning model to get entertainment bungles.
The class name of the test set can be obtained by re-trying the
critical learning model with the most modest fumble set. The
outcomes show that this strategy has the most brief
acknowledgment time and the most elevated right
acknowledgment rate.
[3]MUHAMMAD ATTIQUE KHAN, M IKRAMULLAH
LALI, MUHAMMAD SHARIF,KASHIF JAVED,
KHURSHEED AURANGZEB, SYED IRTAZA HAIDER,
ABDULAZIZ SAUD ALTAMRAH, TALHAAKRAM
proposed an improved computerized PC based strategy and
approved for acknowledgement of apple infections. The
injury spot contrast extending, sore division, and conspicuous
highlights determination and acknowledgment steps are used.
The difference of contaminated spot is improved and division
is performed by the proposed SCP technique. The
presentation of the proposed SCP technique is further
enhanced by EMI approach. At that point, various highlights
are extricated and melded by utilizing an equal strategy. A
Genetic calculation is applied to choose the best highlights,
which are later used by M-SVM for arrangement. The M-SVM
accomplished an arrangement exactness of 92.9%, 94.30%,
and 97.20% for without highlight determination (Test 1), PCA
based component decrease (Test 2), and proposed highlights
determination technique (Test 3), individually. The outcomes
show that the determination strategy gives better execution as
far as exactness and execution time.
[4]Guoxiong Zhou, Wenzhuo Zhang, Aibin Chen,
MingfangHe proposed a strategy for identifying quick rice
illness dependent on FCM-KM and Faster R-CNN
combination is proposed to address different issues with the
rice illness pictures, for example, commotion, obscured
picture edge, huge foundation impedance and low
identification exactness. Initially, the technique utilizes a two-
dimensional sifting veil joined with a weighted staggered
middle channel (2DFM-AMMF) for noise reduction, and
utilizes a quicker two- dimensional Otsu limit division
calculation (Faster 2D-Otsu) to lessen the impedance of
complex foundation with the discovery of target edge in the
picture. At that point the dynamic populace firefly calculation
dependent on the disarray hypothesis just as the most extreme
and least distance calculation is applied for advancement of

the K- Means clustering calculation (FCM-KM) to decide the
ideal bunching class k value while tending to the inclination
of the calculation to fall into the neighborhood ideal issue.
Joined with the R-CNN calculation for the distinguishing
proof of rice illnesses, FCM-KM investigation is led to decide
the various sizes of the Faster R-CNN target outline. As
uncovered by the application consequences of 3010 pictures,
the precision and time needed for location of rice impact,
bacterial scourge and curse were 96.71%/0.65s, 97.53%/0.82s
and 98.26%/0.53s, respectively.
[5]SIVASUBRAMANIAMJANARTHAN,SELVARAJAHTH
USEETHAN,SUTHARSHANRAJASEGARAR,QIANGLYU,
YONGQIANG ZHENG AND JOHN YEARWOOD proposed
a lightweight, quick, and exact profound measurement
learning-based design for citrus illness recognition from
scanty information. propose a fix based grouping network that
contains an implanting module, a bunch model module, and a
basic neural organization classifier, to identify the citrus
infections precisely. Assessment of proposed approach
utilizing freely accessible citrus leafy foods dataset uncovers
its productivity in precisely identifying the different infections
from leaf pictures. Further, the speculation capacity of
methodology is shown utilizing another dataset, to be specific
the tea leaves dataset. Correlation examination of
methodology with existing best in class calculations exhibit its
prevalence as far as discovery exactness (95.04%), the
quantity of boundaries needed for tuning (under 2.3 M), and
the time effectiveness in recognizing the citrus diseases(less
than 10 ms) utilizing the trained model.

 III.PROPOSED SYSTEM
This paper proposes a significant learning-based model
which is readied using Plantvillage dataset containing
pictures of strong and undesirable yield leaves. The
model serves its objective by organizing pictures of
leaves into unfortunate class reliant on the case of flaw.
Utilizing a Plantvillage dataset of 3900 pictures of ailing
and solid plant leaves gathered under controlled
conditions, we train a profound convolutional neural
organization to distinguish 11 yield species such as
maize, cherry, tomato, potato, bell pepper, apple,
strawberry, grape, raspberry, peach, orange and 26
illnesses (or nonappearance thereof). Different
convolutional neural organization bunch with
deliberation and weight delivering abilities goes about as
a proficient element extraction model. The proficient
extractions of highlights from the CNNs render the best
contribution for the profound learning model to foresee
the leaf sickness from leaf dataset pictures. Thus, the
profound learning model gives a non-intrusive, modest
and tech neighbourly for farmers and in the field of
exactness agriculture. Forecasts utilizing different
boundaries, for example, fine buildup, leaf spot early
curse, late scourge and so on.Batch Normalization is
performed to forestall network over-fitting while at the

CLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

46

same time upgrading the heartiness of the model. Prelu
activation function and Adam optimizer are utilized to
improve both assembly and exactness.
 IV.MATERIALS AND METHODOLOGY
The sample image arrangements and its meta-
information conveyance in the Plantvillage dataset have a
critical part in the proficient planning and working of the
proposed model. The morphological highlights, shading,
shape, and surface based highlights will
straightforwardly affect the exhibition and exactness of
the profound neural organization to be created. Absolute
of 3900 sample images are utilized.

Table1.Description of Plantvillage dataset leaf
parameters

A. Building Convolutional Neural Network

The fundamental thought of multi-scale convolution depends
on deciding how an ideal neighborhood scanty structure in a
convolutional vision organization can be approximated and
covered by a promptly accessible thick part. To forestall the
fix arrangement issues, current manifestations of the design
are limited to channel sizes 1x1,3x3 and 5x5. It implies that
the recommended design is a blend of every one of those
layers with their yield channel bank linked into a solitary
yield vector giving the contribution to the following layer.

 B. 2D Convolution layer

 Numerous layers of convolutional layers are utilized in a
consecutive mix to remove the low and significant level
highlights in the information [16]. The convolution network
layer's cycle is characterized in the condition no.1. In this, the

 Xlj = f⎛⎝∑i∈MjXl − 1i * klij + blj⎞⎠

Going before layers of the organization are appeared with
Xl−1i, the bits for learning are klij and the predisposition term
is blj. Mj is for the guide area coordinating cycle.

 C. Activation layer

Relu work shows a quicker union speed than Sigmoid and
tanh work, and the inclination won't be immersed. It is
conceivable to cause the marvel of ''angle vanishing'' in the
preparation of neural organization. An issue is that, the
inclination after a neuron is consistently zero and stops to
react to any information. To determine the issues as
referenced above, PRelu actuation work as opposed to Sigmoid
and Relu enactment work is used. Its numerical articulation is
appeared as follows

PRelu (x) = {x ifx>0

{ax if x≤0

where x shows the yield estimation of a neuron, and a means
the hyper boundary, which is set to 0.25 in our
investigations. The contrast between PRelu capacity and
Relu work is that, when the info signal is under 0, the
estimation of PRelu work is a capacity with a more modest
incline, which changes the circulation of information and
holds a few estimations of the negative hub x.

Type of leaf Disease types

Apple Marssonia leaf blotch, Blackrot
canker, Collar rot, Powdery mildew,
Sooty blotch, Fly speck

Peach Taphrina deformans

Orange Sooty mold, marginal leaf burn, citrus
greening, cigar leaf curling

Cherry Leaf spot, powdery mildew

Tomato Bacterial spot, early blight, grey leaf
spot, late blight, leaf mold

Potato bacterial wilt, Septoria leaf spot, late
blight, early blight, common scab,
black canker

Bell pepper Bacterial leaf spot, southern blight,
powdery mildew

Grape Downy mildew, powdery mildew,
anthracnose, leaf blight

Strawberry Scorch, spot, blight

Maize Bacterial wilt, anthracnose, northern
corn leaf blight, southern corn leaf
blight, common rust

Raspberry Cane blight, grey mold, spur blight

LatticeCLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

Lattice

47

Fig1.Graphically RELU looks like

D. Batch Normalization

The highlights of various leaf illness are unpredictable
and variable. The neural organization learning speed is
low or even hard to learn. In the interim, as the neural
organization structure keeps on developing, the
conveyance of concealed layer information has gone
through critical changes and even vacillations which will
negatively affect the strength of the organization. In our
proposed framework pooling layer is utilized. This is
proposed to guarantee information solidness and makes it
simpler and more steady to prepare profound
organization models while improving the capacity of
organization speculation.

E. Flatten layer

Flatten is the capacity that changes over the pooled
include guide to a solitary section that is passed to the
completely associated layer.

F. Dense Layer

Dense layer is the ordinary profoundly associated neural
organization layer. It is generally normal and often
utilized layer. Dense layer does the underneath procedure
on the info and return the yield.
yield = activation (dot (input, kernel) + bias)

where, input represent the data information

kernel represent the weight information

dot represent numpy speck result of all data and its
comparing loads

bias represent to a one-sided esteem utilized in AI to
upgrade the model activation represent to the actuation work

Table No.2 Model Summary

Model: "sequential_1"
__
Layer (type) Output Shape Param #
==
conv2d_1(Conv2D) (None, 256, 256, 32) 896
__
activation_1(Activation) (None, 256, 256, 32) 0
__
batch_normalization_1 (None, 256, 256, 32) 128
__
max_pooling2d_1(MaxPooling2 (None, 85, 85, 32) 0
__
dropout_1 (Dropout) (None, 85, 85, 32) 0
__
conv2d_2 (Conv2D) (None, 85, 85, 64) 18496
__
activation_2 (Activation) (None, 85, 85, 64) 0
__
batch_normalization_2 (None, 85, 85, 64) 256
__
conv2d_3 (Conv2D) (None, 85, 85, 64) 36928
__
activation_3 (Activation) (None, 85, 85, 64) 0
__
batch_normalization_3 (Batch (None, 85, 85, 64) 256
__
max_pooling2d_2 (MaxPooling2 (None, 42, 42, 64) 0
__
dropout_2 (Dropout) (None, 42, 42, 64) 0
__
conv2d_4 (Conv2D) (None, 42, 42, 128) 73856
__
activation_4 (Activation) (None, 42, 42, 128) 0
__
batch_normalization_4 (Batch (None, 42, 42, 128) 512
__
conv2d_5 (Conv2D) (None, 42, 42, 128) 147584
__
activation_5 (Activation) (None, 42, 42, 128) 0
__
batch_normalization_5 (Batch (None, 42, 42, 128) 512
__
max_pooling2d_3 (MaxPooling2 (None, 21, 21, 128) 0
__
dropout_3 (Dropout) (None, 21, 21, 128) 0
__
flatten_1 (Flatten) (None, 56448) 0
__
dense_1 (Dense) (None, 1024) 57803776
__
activation_6 (Activation) (None, 1024) 0
__
batch_normalization_6 (Batch (None, 1024) 4096
__
dropout_4 (Dropout) (None, 1024) 0
__

CLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

48

Image
preprocessing

dense_2 (Dense) (None, 39) 39975
__
activation_7 (Activation) (None, 39) 0
==
Total params: 58,127,271
Trainable params: 58,124,391
Non-trainable params: 2,880

V. Training and testing of the proposed Robust CNN
model

At the point when the neural association model is arranged
and made for the gauge of leaf affliction it should be
readied. Presently key characteristics for hyper limits like
learning rate, group size, outright number of cycles,
number of test pictures to be set up in each accentuation
should be settled. After that an estimation for development
must be picked for updation and back inciting of model
burdens. In the assessment, experimentation procedure is
used to choose the assessments of the learning rate,
outright number of cycles, and hyper limits. Progression is
done using the ADAM analyzer. From the outset the
planning age consider is fixed 25. The most noteworthy
accentuation per age is restricted to 1584. The learning rate
for each trade is set to 0.1. The absolute dataset was isolated
into two segments as the arrangement and test sets with
80% and 20% rates, exclusively. The proposed CNN model
is arranged and attempted. By then the significant features
eliminated from the proposed CNN model are considered.
A mix of significant component extraction and AI
procedures are utilized to achieve an anticipated and
Simultaneously the plantvillage dataset (3900 data) is in
like manner dealt with 80:20 train and test.

The dataset is preprocessed, for example, Image reshaping,
resizing and transformation to a cluster structure.
Comparable handling is likewise done on the test picture. A
dataset comprising of around 11 distinctive plant leaf
infections is gotten, out of which any picture can be
utilized as a test picture for the software. The train dataset
is utilized to prepare the model (CNN) so that it can
distinguish the test picture and the sickness it has CNN has
various layers that are Dense, Dropout, Initiation, Flatten,
Convolution2D, and MaxPooling2D. After the model is
prepared effectively, the product can recognize the illness
if the plant species is contained in the dataset. After fruitful
preparing and preprocessing, correlation of the test picture
and prepared model takes spot to anticipate the illness.

Fig No.2 Architecture Flow Diagram

 Dataset image

Image
augmentation

Testing images

Trained model

Disease prediction

Model
buildin
g

Dense layer

Flatten layer

Max pooling

Relu activation

Conv2D

LatticeCLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

Lattice

49

Fig 3. Training loss curve

Fig 4. Training accuracy curve

 VI. RESULTS AND DISCUSSIONS

In this investigation, we have proposed and summed up the
Robust Deep Neural Network- based methodology and the
contemporary basic discoveries. From the investigations led
and results got there's a reasonable sign that utilizing profound
Convolutional neural organizations will have brilliant impacts
in contriving programming for highlight extraction, finding,
identification, and foreseeing subtleties concerning forecast of
plant leaf infection with the precision of 98.74%It is engaged
in how picture from given dataset (arranged dataset) in field
and past educational assortment used predict the case of plant
infections using CNN model. This brings a part of the
accompanying encounters about plant leaf affliction figure.
As most noteworthy sorts of plant leaves will be covered
under this system, farmer may turn out to be more familiar
with about the leaf which may never have been created and
runs through all possible plant leaves, it enables the farmer in
unique of which to respect create. In like manner, this
structure ponders the past production of data which will
empower the farmer to get understanding into the premium

and the cost of various plants in market. Cultivating division
needs to automate the perceiving the yield crops from
capability measure (certifiable time).To robotize this cycle by
demonstrating the desire bring about web application or work
territory application. To improve the work to execute in
Artificial Intelligence atmosphere.

 REFERENCES
[1]YANGZHANG,CHENGLONG SONG, AND DONGWEN ZHANG,“
Deep Learning-Based Object Detection Improvement for Tomato Disease,”
Digital Object Identifier, vol 8,pp. 56607-56614, March 31, 2020.
[2]JIANG HUIXIAN,”The Analysis of Plants Image Recognition Based on
Deep Learning and Artificial Neural Network,” Digital Object Identifier,
vol.8, 2020, pp. 68828-68841, April 23, 2020.
[3]MUHAMMAD ATTIQUE KHAN, M IKRAMULLAH LALI,
MUHAMMAD SHARIF, KASHIF JAVED, KHURSHEED AURANGZEB,
SYED IRTAZA HAIDER, ABDULAZIZ SAUD ALTAMRAH, and TALHA
AKRAM,”An Optimized Method for Segmentation and Classification of
Apple Diseases based on Strong Correlation and Genetic Algorithm based
Feature Selection,”Digital Object Identifier,vol.7,2019,pp.46261 – 46277, 28
March 2019.
[4]Guoxiong Zhou, Wenzhuo Zhang, Aibin Chen, MingfangHe,”Rapid
Detection of Rice Disease Based on FCM-KM and Faster R-CNN
Fusion,”Digital Object Idendifier,vol.7,2019,pp.143190 – 143206, 24
September 2019.
[5]SIVASUBRAMANIAMJANARTHAN,SELVARAJAHTHUSEETHAN,S
UTHARSHANRAJASEGARAR,QIANGLYU,YONGQIANG ZHENG
AND JOHN YEARWOOD,” Deep Metric Learning Based Citrus Disease
Classification With Sparse Data,”Digital Object Idendifier,vol.8,2020,pp.
162588- 162600, September 17, 2020.
[6]SHUANGJIEHUANG, GUOXIONG ZHOU, MINGFANG HE, AIBIN
CHEN, WENZHUO ZHANG, AND YAHUI HU,“Detection of Peach
Disease Image Based on Asymptotic Non-Local Means and PCNN-IPELM”
Digital Object Identifier, vol. 8, 2020, pp.136421-136433, August 5, 2020.
[7]CHAOWANG, PINGPING WANG,SHUGUANG HAN, LIDA
WANG,YUMING ZHAO,AND LIRAN JUAN,“FunEffector-Pred:
Identification of Fungi Effector by Activate Learning and Genetic Algorithm
Sampling of Imbalanced Data” Digital Object Identifier, vol.8, 2020, pp.
57674-57683, April 1, 2020.
[8]XUAN NIE, LUYAO WANG, HAOXUAN DING, AND MIN
XU,”Strawberry Verticillium Wilt Detection Network Based on Multi-Task
Learning and Attention” Digital Object Identifier, vol.7, 2019, pp. 170003-
170011, December 9,
2019.
[9] XUAN WANG, WEIKANG DU, FANGXIA GUO, AND SIMIN
HU,”Leaf Recognition Based on Elliptical Half Gabor and Maximum Gap
Local Line Direction Pattern” Digital Object Identifier, vol.8, 2020, pp.
39175-39183, March 4, 2020.
[10]DAWEI LI, YAN CAO, GUOLIANG SHI, XIN CAI, YANG CHEN,
SIFAN WANG, AND SIYUAN YAN,”An Overlapping-Free Leaf
Segmentation Method for Plant Point Clouds” Digital Object Identifier, vol.7,
2019, pp. 129054- 129070, September 23, 2019.
[11]Draško Radovanović, Slobodan Đukanović,” Image-Based Plant Disease
Detection: A Comparison of Deep Learning and Classical Machine Learning
Algorithms” 24th International Conference on Information Technology (IT)
Zabljak, pp.1-4,18 – 22 February 2020.
[12]BAODONG MA, RUILIANG PU, SONG ZHANG, AND LIXIN
WU,”Spectral Identification of Stress Types for Maize Seedlings Under
Single and Combined Stresses,” Digital Object Identifier, vol.6, 2018, pp.
13773-13782, March 28, 2018.
[13]Ding Jiang, Fudong Li, Yuequan Yang, Song Yu,”A Tomato Leaf
Diseases Classification Method Based on Deep Learning,” Digital Object
Identifier,vol.8,2020, pp. 1446-1450,august 24,2020.

CLASSIFICATION OF DIFFERENT PLANT LEAF DISEASES USING MULTIPLE
CONVOLUTIONAL NEURAL NETWORK AND IMAGE PRE-PROCESSING

50

Classification of Weed Species
Using Deep Learning

Pokala PranayKumar
Woxsen University

Sangareddy
pranaykumar.pokala_2022@woxsen.edu.in
Prof. Raul Villamarin Rodriguez

Dean- School of Business
Woxsen University

Sangareddy
raul.rodriguez@woxsen.edu.in

ABSTRACT:
Automatic identification and classification of
weed species are essential in the agricultural field
for controlling weed species. Weeds are an
undesirable and unfortunate plant that meddles
with the usage of land and water assets and along
these lines unfavourably influence crop creation
and human government assistance. So,
identification and classification of weed are
important for farmers to protect the crop field and
to maintain the productivity and quality of the
crop. But it takes a long time and huge human-
effort to manually identify and classify weed
species. Technology advancement has made
complex problems to solve more efficiently and
reduces manpower and lower the costs. With
technological advancement, many methods have
been introduced. Using deep learning methods
such as neural networks on agricultural data has
increased enormous consideration lately. The
evolution of deep learning made it easy for
identifying and classifying the weed type. This
paper uses publicly available large multiclass
image datasets of weed species obtained from
Australian rangelands for classification. In this
paper, we are using the Transfer Learning
technique with a pretrained network called
resnet18 to classify the type of weed from the
images present in the dataset and also calculating
performance metrics like accuracy, sensitivity,
recall, precision, etc. This helps in controlling
weed species in the crop field.
Keywords: transfer learning, deep learning, weeds,
convolutional neural network (CNN), resnet-18,
pretrained networks.
1. INTRODUCTION:

Man has designated his food crops from the
numerous thousand plant species that exist for his or
her nutritionary and flavour characteristic instead of
through their ability to contend.

Weeds grow on the soil in conjunction with crop
plants. Weeds are unwanted and undesirable plants
that interfere with the use of land and water
resources and so adversely they will even be referred
to as plants out of place. Weeds contend with the

helpful and desired vegetation in croplands, forests,
aquatic systems, etc. furthermore, presents pleasant
downside in non-trimmed regions like mechanical
destinations, street/rail lines, runways, scene
plantings, water tanks and streams in which, and so
on., anyway this development of weed.

These unsought plants eat up the nutrients, water,
and house assigned for the meant crop, and
eventually cause a large reduction in crop yield.
Some weeds unleash harmful substance that affects
crop growth. In conjunction with this, weeds have an
effect on and interfere with the management of all
the terrestrial and aquatic resources. The growing of
crops, as a part of agriculture for hundreds of years,
has modified the natural vegetation. Weeds, in the
crop field, scale back input potency, interfere with
agricultural operations, impair the quality and act as
alternate hosts for many insect pests and diseases.
The plain impact of those traits is that the hike in the
price of cultivation by many folds. The animals that
rely upon this native multifariousness for his or her
survival also are obtaining affected. Weeds have a
task among agroecosystems in supporting
multifariousness additional typically.

1.1TYPES OF WEEDS:

There are many types, but in our dataset, we are
considering 9 types of weeds.

1. CHINESE APPLE:

The scientific name of the Chinese apple is
Ziziphus mauritiana. It is spread around the
northern part of Australia and the central
part of Queensland. It can grow up to
8meters tall and 10meters in covering
diameter and the arms are heavy, crickled.
These species are also restricted according
to the biosecurity act 2014 [3].

2. LANTANA:
Lantana spreads in two different ways.
Layering is a type of vegetative
multiplication where stems send roots into
the dirt, permitting it to rapidly shape

LatticeCLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

Lattice

51

exceptionally thick stands and spread short
separations. Additionally, flying creatures
and different creatures, for example, foxes
expand also, pass the seed in their
droppings, possibly spreading it over very
enormous separations. The germination
pace of new seed is commonly low, yet
improves after being processed. Lantana
can develop in high-precipitation zones
with tropical, subtropical, and mild
atmospheres. [4].

3. PARKINSONIA:
Parkinsonia duplicates by seeds. Develop
trees normally produce around 5000 seeds
every year, except can create in the
overabundance of 13,000. The unit’s drift
and can be conveyed huge separations
downstream from upper catchment
pervasions, particularly during floods. Seed
can likewise be moved away from the
parent plant in mud appended to creatures
or hardware. In Australia, pervasions
happen chiefly all through the waterfront,
focal and western Queensland, focal and
northern Territory, and the Kimberley
what's more, Pilbara locales of Western
Australia. [5].

4. PARTHENIUM:
Parthenium is a yearly herb with a
profound taproot and an erect stem that gets
woody with age. It attacks upset exposed
territories and fields. Parthenium costs
Australia's hamburger industry $16.5
million every year and trimming
enterprises a few million dollars for each
year. Parthenium weed is a confined
intrusive plant under the Biosecurity Act
2014. Its scientific name is Parthenium
hysterophorus [6].

5. PRICKLY ACACIA:
Prickly acacia is a little, prickly, spreading
tree commonly developing to around 4–5m
high and every so often to 10 m. It is as a
rule single-stemmed. The bark of youthful
trees has a tinge of orange as well as green.
More seasoned trees have dull, unpleasant
bark and tend to lose the greater part of
their thistles. The green, plant-like leaves
are 30–40 mm long. Each leaf is comprised
of 10–25 sets of very little (3–6 mm) flyers
along its length. [7].

6. RUBBER VINE:
Rubber vine is a Weed of National
Noteworthiness. It is viewed as one of the
most exceedingly awful weeds in Australia

as a result of its intrusiveness, the potential
for spread, and financial and ecological
effects. Rubber vine has impacts on
peaceful also, protection regions of north-
eastern Australia. Its primary effect on
pastoralism is the loss of brushing nation,
which in 1995 was evaluated to cost the
Queensland meat industry $18 million [8].

7. SIAM WEED:
Siam weed is one of the world's most
noticeably terrible weeds, with a
sensational development rate and
enormous seed creation. Plants can arrive
at 10 meters by scrambling through
contiguous vegetation. It structures
impervious bushes to three meters tall in
open locales, for example, waterway banks
and fields. It can cover tropical organic
product crops, youthful ranger service
manors, and fields [9].

8. SNAKE WEED:
'Snakeweed' is the term used to depict
various bushes from the Stachytarpheta
family.
Local to the tropical Americas, snakeweeds
are clustering lasting bushes with intense,
fanned stems and woody roots. Snakeweed
species can attack the side of the road, upset
regions, and wet fields. In the Pacific
district, 8 snakeweed species have become
weeds in tropical territories. Snakeweed
species are found along the Queensland
coast [10].

9. NEGATIVES:
In this, the images are not related to
describe weeds. These are might be other
than described weeds or this can be a non-
weed [1].

Using artificial intelligence day-by-day the
technology growth has been increased and easily we
are analyzing the images using different machine
learning and deep learning techniques. In our
experiment, we are taking Australia deep weed
dataset for image classification using transfer
learning. In Robotics many agricultural scientists are
trying to make useful devices and techniques for
farming and also for the farmers. The latest
technology is used for farming will reduce time and
also easily identify the diseased plant or crop. This
makes us take appropriate action on these diseases
before it spreads to remaining crops. It also reduces
the manpower and also predicts with best accuracies.
In deep learning, the CNN model is used for
classification which classifies the image better and
with fast execution.

CLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

52

2. MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 DATASET DESCRIPTION:

This dataset encloses with 9 classes which are (a)
Chinee apple, (b) Lantana, (c) Parkinsonia, (d)
Parthenium, (e) Prickly acacia, (f) Rubber vine, (g)
Siam weed, (h) Snakeweed and (i) Negatives. Total
images are 17,509. These images are gathered from
multiple regions around Australia. The chose weed
species are nearby to peaceful meadows over the
territory of Queensland. They consist of: Chinee
apple, Snakeweed, Lantana, Prickly acacia, Siam
weed, Parthenium, Rubber vine, and Parkinsonia.
The pictures were gathered from weed pervasions at
the accompanying locales across Queensland: Black
River, Charters Towers, Cluden, Douglas, Hervey
Range, Kelso, McKinlay, and Paluma. The table
beneath separate the dataset by weed, area [2].

2.2 METHODS

2.2.1 CONVOLUTIONAL NEURAL
NETWORK:

Convolutional neural networks (CNNs) rose out of
the investigation of the mind's visual cortex, and
they have been utilized in picture acknowledgment
since the 1980s. In the last not many a long time, on
account of the expansion in computational force, the
measure of accessible preparing information. CNN's
have man matured to accomplish superhuman
execution on some complex visual errands. The
power picture search administrations, self-driving
autos, programmed video order frameworks, and
more. Besides, CNNs are not confined to visual
observation: they are likewise effective at different
undertakings, for example, voice acknowledgment
or common language preparing (NLP); These
investigations of the visual cortex motivated the
neocognitron, presented in 1980, which
continuously advanced into what we currently call
convolutional neural systems. This design makes
them fabricate squares that you know, for example,
completely associated layers and sigmoid enactment
capacities, however, it additionally presents two new
structure squares: convolutional layers and pooling
layers.

2.2.1.1 Convolution layer:
The most significant structure square of a CNN is
the convolutional layer. Neurons in the first
convolutional layer are not associated with every
pixel in the info picture, however just to pixels in
their responsive fields. Thusly, every neuron in the

second convolutional layer is associated uniquely
with neurons situated inside a little square shape in
the main layer. This design permits the system to
focus on low-level highlights in the principal
concealed layer, at that point gather them into more
elevated level highlights in the following concealed
layer, etc. This various levelled structure is basic in
certifiable pictures, which is one reason why CNNs
work so well for picture acknowledgment.

2.2.1.2 Filters:
A neuron's loads can be spoken to as a little picture
of the size of the responsive field. There are two
potential arrangements of loads called channels.
Right now, two sorts of channels. 1. Vertical filter:
for instance, 7 × 7 frameworks loaded with 0s aside
from the focal section, which is brimming with 1s.
neurons utilizing these loads will disregard
everything in their open field aside from the focal
vertical line (since all information sources will get
increased by 0, except for the ones situated in the
focal vertical line).2.horizontal filter: once more,
neurons utilizing these loads will disregard
everything in their open field except for the focal
even line. A layer loaded with neurons utilizing a
similar channel gives you a feature map, which
features the regions in a picture that are generally
like the filter. During preparing, a CNN finds the
most valuable channels for its assignment, and it
figures out how to consolidate them into
increasingly complex examples (e.g., a cross is a
territory in a picture where both the vertical channel
and the even channel are dynamic).

2.2.1.3 Multiple feature maps:
Till now we showed for convolutional 2D layer, but
in the real world, there are several feature maps of
the same sizes shown as a 3D layer. Input pictures
are additionally made out of various sublayers: one
for each shading channel. There are commonly
three: red, green, and blue (RGB). Grayscale
pictures have only one station, yet a few pictures
may have considerably more—for instance, satellite
pictures that catch additional light frequencies, (for
example, infrared). A neuron situated in push I,
section j of the element map k in a given
convolutional layer l is associated with the yields of
the neurons in the past layer l – 1, situated in lines
I×sw to I×sw+fw – 1 and segments j × sh to j × sh + fh
– 1, overall element maps (in layer l – 1). Note that
all neurons situated in a similar line I and segment j
yet in various component maps are associated with
the yields of precisely the same neurons in the past
layer.

LatticeCLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

Lattice

53

2.2.1.4 Pooling Layer:
They will probably subsample (i.e., recoil) the
information picture to diminish the computational
burden, memory utilization, and the number of
parameters (accordingly constraining the danger of
overfitting). Reducing the picture size likewise
causes the neural system to endure a smidgen of
picture move (area invariance). Much the same as in
convolutional layers, every neuron in a pooling layer
is associated with the yields of a set number of
neurons in the past layer, situated inside a little
rectangular responsive field. You should
characterize its size, the walk, and the cushioning
type. a pooling neuron has no loads; everything it
does is total the information sources utilizing a total
capacity, for example, the maximum or mean. max-
pooling layer, which is the most well-known sort of
pooling layer. Right now, we utilize a 2 × 2 pooling
portion, a stride of 2, and no padding. Note that lone
the maximum info esteem in every piece makes it to
the following layer. Different information sources
are dropped. A pooling layer normally chips away at
each info channel freely, so the yield profundity is
equivalent to the information profundity.

After all these the final layers are fully connected
layer with the output layer (eg: softmax layer) for
prediction.

2.2.2 TRANSFER LEARNING:

Transfer learning is a Machine Learning technique
whereby a model is trained and developed for one
assignment and is then re-used on a second related
task. It refers back to the situation wherein what has
been learned in one setting is exploited to enhance
optimization in another setting [11]. The objective
of TL is to help enhance the prediction feature in
gaining knowledge of the target undertaking the
usage of the information from the source area with
the supply target [12].
There are two casual approaches are as follows:

Develop a Model Approach
Pre-trained Model Approach
1. Develop a Model Approach
1. Select Source Task. You should select an
associated predictive modeling hassle with an
abundance of information where there may be some
relationship inside the input information, output
statistics, and/or ideas learned for the duration of the
mapping from entering to output information.
2. Develop Source Model. Next, you ought to
broaden a skillful model for this first venture. The
version has to be higher than a naive version to make
certain that some feature gaining knowledge has
been performed.
3. Reuse Model. The version suit at the source
assignment can then be used as the place to begin for
a model at the second assignment of interest. This
may additionally involve the usage of all or elements
of the model, relying on the modeling technique
used.
4. Tune Model. Optionally, the version might also
need to be adapted or delicate on the enter-output
pair records available for the undertaking of interest.
2. Pre-trained Model Approach
1. Select the Source Model. A pre-skilled source
model is chosen from available models. Many
studies establishments launch models on massive
and challenging datasets that may be included in the
pool of candidate models from which to pick out
from.
2. Reuse Model. The version pre-skilled version can
then be used as the start line for a version on the
second undertaking of interest. This may
additionally involve the usage of all or components
of the version, depending on the modeling method
used.
3. Tune Model. Optionally, the version can also
want to be tailored or subtle on the enter-output pair
data to be had for the task of interest.
This second kind of transfer learning is common
within the area of deep learning [13].

CLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

54

Fig 10. Deep convolutional neural network

2.2.3 RESNET (RESIDUAL NETWORK):

Deep residual studying framework
for picture classification tasks.
Which supports numerous architectural
configurations, allowing to gain an appropriate rati
o between the velocity of work and quality.

2.2.3.1 Resnet-18

ResNet-18 is a convolutional neural network that is
18 layers profound. You can load a
pretrained model of
the community educated on more than a
million pics from the ImageNet database. The
pretrained organization can arrange pics into 1,000
article classes, for example, a console, mouse,
pencil, and numerous creatures. As a result,
 the network has discovered prosperous fea
ture representations for a large variety of images.
The community has a photo enter dimension of
224-by-224[14].

3. EVALUATION AND EXPERIMENT
RESULTS:

3.1 EVALUATION PROCESS:

In this process, we used resnet18 as a pretrained
network in the transfer learning method. The options
we used for the training process are we used an
initial learning rate of 0.004 with 10 epochs. The
dataset is divided into train, validation, and test. The
divided ratios are for train-80%, for validation-10%,
for test-10%. We used an sgdm optimizer. The
results describe the accuracy after training progress.
We displayed validation accuracy and test accuracy.
Besides, we calculated the confusion matrix along
with performance metrics like F-score, recall,
sensitivity, etc.

3.2 EXPERIMENT RESULTS

In this section, we are presenting the
classification results of the deep weed dataset. In
this experiment we are using Matlab as a platform
for execution and the programming language is
also Matlab. For this training progress, we used
GPU. In this, we are providing performance
metrics for our model. The results show in table
2. In this, the images are taken from several
regions of Australia. The table describes the
metrics for each class. Overall performance
metrics for each class.

Table 2. Performance metrics

Classname accuracy sensitivity specificity precision recall F-score
ChineeApple 0.972648432 0.802083333 0.984319316 0.77777778 0.8020833 0.78974359
Lantana 0.980653769 0.813186813 0.991477273 0.86046512 0.8131868 0.83615819
Negative 0.942628419 0.961538462 0.922114047 0.93052109 0.9615385 0.94577554
Parkinsonia 0.991994663 0.943181818 0.995038979 0.92222222 0.9431818 0.93258427

LatticeCLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

Lattice

55

Parthenium 0.988659106 0.863636364 0.996456414 0.9382716 0.8636364 0.89940828
Pricklyacacia 0.986657772 0.923076923 0.990767045 0.86597938 0.9230769 0.89361702
Rubbervine 0.989993329 0.860465116 0.997876858 0.96103896 0.8604651 0.90797546
Siamweed 0.993328886 0.945652174 0.99644634 0.94565217 0.9456522 0.94565217
Snakeweed 0.975983989 0.701149425 0.992917847 0.85915493 0.7011494 0.7721519

The validation accuracy is 91.21±% and test accuracy is 91.13±%. The confusion matrix is given below.

Fig 11. Confusion matrix

The overall performance metrics graph is shown below. The average accuracy of all classes is 98%.

Fig 12. Describes the performance metrics for each class.

0

0.2

0.4

0.6

0.8

1

1.2

ChineeApple Lantana Negative Parkinsonia Parthenium Pricklyacacia Rubbervine Siamweed Snakeweed

m
et

ric
s v

al
ue

s

classnames

PERFORMANCE METRICS

accuracy sensitivity specificity precision recall Fscore

CLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

56

The resultant images as shown below are the
random images displayed after testing is done.
The images are showing how much the

probability percentage of the data is matched with
the training data.

Fig 13. Random test result images

The results analyses give a well-defined
performance with a new pretrained network as a
new idea. This analysis provides a way to find
weed in crop fields. This experiment is very
useful to agriculture as farmers can identify the
weed type with remedies to remove from farming
land. This experiment can be developed as a
mobile application. This makes farmers easy to
take pictures from their devices and upload them
into the application which gives the details about
the weed.

4. ACKNOWLEDGMENT

The author wants to thanks Prof. S. Phani
Kumar and Dr.Raul V. Rodriguez for providing
the knowledge to do this project and also to the
dataset collectors.

5. CONCLUSION AND FUTURE
WORK

In this paper, we described the methods on a deep
weed dataset using the transfer learning method.

This is a multi-class classification. This could be a
base for future experiments as we discussed this can
be used as a mobile application or this can be
installed in drones as software that detects the weed
crop with the scanner in the drone. The researchers
can use this as a reference and make predictions
using different techniques as well as using different
pretrained networks.

6. REFERENCES

1. Alex Olsen, Dmitry A. Konovalov,
Bronson Philippa, Peter Ridd, Jake C.
Wood, Jamie Johns, Wesley Banks,
Benjamin Girgenti, Owen Kenny, James
Whinney, Brendan Calvert, Mostafa
Rahimi Azghadi & Ronald D. White
“DeepWeeds: A Multiclass Weed Species
Image Dataset for Deep Learning”.

2. Dataset,https://github.com/AlexOlsen/Dee
pWeeds.

3. The Australian government website,
https://www.environment.gov.au/biodivers
ity/invasive/weeds/

LatticeCLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

Lattice

57

4. Brisbane City Council weed identification
tool,
https://weeds.brisbane.qld.gov.au/weeds/c
hinee-apple

5. Environment.gov,https://www.environmen
t.gov.au/biodiversity/invasive/weeds/publi
cations/guidelines/wons/pubs/l-camara.pdf

6. Environment.gov,https://www.environmen
t.gov.au/biodiversity/invasive/weeds/publi
cations/guidelines/wons/pubs/p-
aculeata.pdf

7. Queensland Government,
https://www.business.qld.gov.au/industrie
s/farms-fishing forestry/agriculture/land-
management/health-pests-weeds-
diseases/weeds
Diseases/invasive-
plants/restricted/parthenium

8. Environment.gov,https://www.environmen
t.gov.au/biodiversity/invasive/weeds/publi
cations/guidelines/wons/pubs/a-
nilotica.pdf

9. Brisbane City Council weed identification
tool,
https://weeds.brisbane.qld.gov.au/weeds/r
ubber-vine

10. The Australian government, depart of
agriculture, water, and
environment,https://www.agriculture.gov.
au/biosecurity/australia/naqs/naqs-target-
lists/siam-weed

11. Queensland Government,
https://www.business.qld.gov.au/industrie
s/farms-fishing-forestry/agriculture/land-
management/health-pests-weeds-
diseases/weeds-diseases/invasive-
plants/other/snakeweeds

12. Yuqing Gao, Khalid M. Mosalam, Deep
Transfer Learning for Image‐Based
Structural Damage Recognition, First
published:16 April 2018

13. A Gentle Introduction to Transfer
Learning for Deep Learning by Jason
Brownlee on December 20, 2017, in Deep
Learning for Computer Vision Tweet
Share.

14. A Study on CNN Transfer Learning for
Image Classification Mahbub Hussain,
Jordan J. Bird, and Diego R. Faria

15. Mathworks,
https://in.mathworks.com/help/deeplearnin
g/ref/resnet18.html

CLASSIFICATION OF WEED SPECIES USING DEEP LEARNING

58

The Association of Data Scientists
is the premier global professional body
of data science & machine learning
professionals.

ADaSI serves the scientific and
professional needs of data science
Professionals including educators,
scientists, students, managers, analysts,
and consultants. It serves as a focal
point for data science, permitting
them to communicate with each other
and reach out their professional goal,
as well as the varied clientele of the
profession’s research and practice.

It provides services such as publishing
peer reviewed scholarly journals
that describe the latest data science
methods and applications, organizing
national and international conferences
for academics and professional,
providing analytics certification
and continuing education to assist
members and others in furthering their
career

About ADASCI

Lattice

59

PUBLISHED BY:

ONLINE CONTENTS AVAILABLE: EVERY
QUARTER ON www.adasci.org/lattice

