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Abstract. In this paper we present MANTRA (Multi-Attribute, Non-Initializing,
Texture Reconstruction Based Active Shape Model) which incorporates a number
of features that improve on the the popular Active Shape Model (ASM) algorithm.
MANTRA has the following advantages over the traditional ASM model. (1) It
does not rely on image intensity information alone, as it incorporates multiple
statistical texture features for boundary detection. (2) Unlike traditional ASMs,
MANTRA finds the border by maximizing a higher dimensional version of mu-
tual information (MI) called combined MI (CMI), which is estimated fromkNN
entropic graphs. The use of CMI helps to overcome limitations of the Maha-
lanobis distance, and allows multiple texture features to be intelligently com-
bined. (3) MANTRA does not rely on the mean pixel intensity values to find
the border; instead, it reconstructs potential image patches, and the image patch
with the best reconstruction based on CMI is considered the object border. Our
algorithm was quantitatively evaluated against expert ground truth on almost 230
clinical images (128 1.5 Tesla (T) T2 weightedin vivo prostate magnetic reso-
nance (MR) images, 78 dynamic contrast enhanced breast MR images, and 21
3T in vivo T1-weighted prostate MR images) via 6 different quantitative metrics.
Results from the more difficult prostate segmentation task (in which a second ex-
pert only had a 0.850 mean overlap with the first expert) show that the traditional
ASM method had a mean overlap of 0.668, while the MANTRA modelhad a
mean overlap of 0.840.

1 Introduction

The Active Shape Model (ASM) [1] and Active Appearance Model(AAM) [2] are both
popular methods for segmenting known anatomical structures. The ASM algorithm in-
volves an expert initially selecting landmarks to construct a statistical shape model us-
ing Principal Component Analysis (PCA). A set of intensity values is then sampled
along the normal in each training image. During segmentation, any potential pixel on
the border also has a profile of intensity values sampled. Thepoint with the minimum
Mahalanobis distance between the mean training intensities and the sampled intensities
presumably lies on the object border. Finally, the shape model is updated to fit these
landmark points, and the process repeats until convergence. However, there are several
limitations with traditional ASMs with regard to image segmentation. (1) ASMs require
an accurate initialization and final segmentation results are sensitive to the user defined



initialization. (2) The border detection requires that thedistribution of intensity values
in the training data is Gaussian, which need not necessarilybe the case. (3) Limited
training data could result a near-singular covariance matrix, causing the Mahalanobis
distance to not be defined.

Alternatives and extensions to the traditional ASM algorithm have been proposed
[3–5]. An interesting alternative classifier-based methodwas proposed in [3] where
Taylor-series gradient features are calculated and the features that improve classifica-
tion accuracy during training are used during segmentation. Then, the classifier is used
on the features of the test image to determine border landmark points. The classifier ap-
proach provides an alternative to the Mahalanobis distancefor finding landmark points,
but requires an offline feature selection stage. The segmentation algorithm presented in
[5] gave very promising results as it implemented a multi-attribute based approach and
also allowed for multiple landmark points to be incorporated; however, it still relies on
the Mahalanobis distance for its cost function which might not be optimal.

MANTRA differs from the traditional AAM in that AAMs employ aglobal texture
model of the entire object, which is combined with the shape information to create a
general appearance model. For several medical image tasks however, local texture near
the object boundary is more relevant to obtaining an accurate segmentation instead of
global object texture, and MANTRA’s approach is to create a local texture model for
each individual landmark point.

In this paper we present a novel segmentation algorithm: Multi-Attribute Non-
Initializing Texture Reconstruction Based ASM (MANTRA). MANTRA comprises of
a new border detection methodology, from which a statistical shapes model can be fit-
ted. In the following page we briefly describe several novel aspects of MANTRA and
several ways it overcomes limitations associated with the traditional approach.

(a) Local Texture Model Reconstruction: To overcome the limitations associated
with using the Mahalanobis distance, MANTRA performs PCA onpixel neighborhoods
surrounding the object borders of the training images to create a local texture model
for each landmark point. Any potential border landmark point of the test image has
a neighborhood of pixels sampled, and the PCA-based local texture model is used to
reconstruct the sampled neighborhood in a manner similar toAAMs [2]. These training
reconstructions are compared to the original pixels valuesto detect the object border,
where the location with the best reconstruction is presumably the object border.

(b) Use of Multiple Attributes with Combined Mutual Informa tion: Since mu-
tual information (MI), a metric that quantifies the statistical interdependence of multiple
random variables, operates without assuming any functional relationship between the
variables [6], we employ it as a robust image similarity measure to compare the re-
constructions to the original pixel values. In order to overcome the limitations of using
image intensities to represent the object border, 1st and 2nd order statistical features [7,
8] are generated from each training image. These features have been previously shown
to be useful in both computer aided diagnosis systems and registration tasks [7–10]. To
integrate multiple image attributes, we utilize Combined MI (CMI) because of its prop-
erty to incorporate non-redundant information from multiple sources, and its previous
success in complementing similarity measures with information from multiple feature
calculations [10–12]. Since CMI operates in higher dimensions, histogram-based es-
timation approaches would become too sparse when more than 2features are used.
Therefore, we implement thek nearest neighbor (kNN) entropic graph technique to



estimate the CMI [13]. The values are plotted in a high dimensional graph, and the en-
tropy is estimated from the distances to thek nearest neighbors, which is subsequently
used to estimate the MI value.

(c) Non-requirement of Model Initialization : Similarly to several other segmen-
tation schemes, MANTRA is cast within a multi-resolution framework, in which the
shape is updated in an iterative fashion and across image resolutions [14]. At each
resolution increase, the area of the search neighborhood decreases, allowing only fine
adjustments to be made in the higher resolution. This overcomes the problem of noise
near the object boundary and makes MANTRA robust to different initializations.

The experiments were performed on nearly 230 images comprising 3 MR protocols
and 2 body regions. Three different 2D models were tested: MANTRA, the traditional
ASM, and ASM+MI (a hybrid with aspects of both MANTRA and ASM). Quantitative
evaluation was performed against expert delineated groundtruth via 6 metrics.

2 Brief Overview of MANTRA

MANTRA comprises of a distinct training and segmentation step (Figure 1).
Training
1. Select Landmark Points of object border on each training image.
2. Generate Shape Model Using PCA as in traditional ASMs [1].
3. Generate Texture Features: K statistical texture feature scenes are generated for each
of theN training images, which include gradient and second order co-occurrence fea-
tures [7, 8]. Then, a neighborhood surrounding each landmark point is sampled from
each of theK feature scenes for allN training images.
4. Generate Texture Model Using PCA: Each landmark point hasK texture models
generated by performing PCA on allN neighborhood vectors for each given feature.
Segmentation
5. Overlay Mean Shape on test image to anchor the initial landmark points.
6. Generate Texture Features: The same texture features used for training (gradient and
second order co-occurrence [7, 8]) are generated from the test image.
7. Reconstruct Patches Using Texture Model: A neighborhood is searched near each
landmark point, and the search area size is inversely related to the resolution, so that
only fine adjustments are made at the highest resolution. Forany potential border land-
mark point, its surrounding values are reconstructed from the training PCA models.

Fig. 1. The modules
and pathways com-
prising MANTRA,
with the training
module on the left
and the testing
module on the right.



8. Use kNN Entropic Graphs to Maximize CMI: kNN entropic graphs [13] are used to
estimate entropy, and then CMI. The location with the highest CMI value between its
reconstructed values and its original values is the new landmark point.
9. Fit Shape Model To New Landmark Points: Once a set of new landmarks points
have been found, the current shape is updated to best fit theselandmark points [1], and
constrained to +/- 2.5 standard deviations from the mean shape. The resolution is then
doubled at each iteration until convergence is obtained.

3 Methodology

This section is focused on Steps 4, 6-9 of the MANTRA scheme, as Steps 1-3, 5 are
identical to corresponding steps in [1].

3.1 Generating Texture Models

We define the set ofN training images asStr = {Cα | α ∈ {1, . . . , N}}, where
Cα = (C, fα) is an image scene whereC ∈ ℜ2 represents a set of 2D spatial loca-
tions andfα(c) represents a function that returns the intensity value at any c ∈ C. For
∀Cα ∈ Str, X

α ⊂ C is a set ofM landmark points manually delineated by an ex-
pert, whereXα = {cα

m | m ∈ {1, . . . , M}}. For∀Cα ∈ Str, K features scenesFα,k =
(C, fα,k), k ∈ {1, . . . , K} are then generated. For our implementation, we used the gra-
dient magnitude, Haralick inverse difference moment, and Haralick entropy texture fea-
tures [7, 8]. For each training imageCα, and each landmark pointcα

m, aκ-neighborhood
Nκ(cα

m) (where for∀d ∈ Nκ(cα
m), ‖ d − cα

m ‖2≤ κ, cα
m /∈ Nκ(cα

m)) is sampled on
each feature sceneFα,k and normalized. For each landmark pointm and each feature
k, the normalized feature values for∀d ∈ Nκ(cα

m) are denoted as the vectorgα,k
m =

[

fα,k(d)/
∑

d fα,k(d) | d ∈ Nκ(cα
m)

]

. The mean vector for each landmark pointm and
each featurek is given as̄gk

m =
[

1
N

∑

α fα,k(d) | α ∈ {1, . . . , N}, d ∈ Nκ(cα
m)

]

and
the covariance matrix ofgα,k

m over∀α ∈ {1 . . .N} is denoted asϕk
m. Then, PCA is

performed by calculating the Eigenvectors ofϕk
m and retaining the Eigenvectors that

account for most (∼ 98%) of the variation in the training data , denoted asΦk
m.

3.2 Reconstructing Local Image Texture

We define a test image as the sceneCte, whereCte /∈ Str, and its correspondingK
feature scenes asFk, k ∈ {1, . . . , K}. TheM landmark points for the current iteration
j are denoted as the setXte = {cm | m ∈ {1, . . . , M}}. A γ-neighborhoodNγ

(whereγ 6= κ) is searched near each current landmark pointcm to identify a landmark
point c̃m which is in close proximity to the object border. Forj = 1, cm denotes the
initialized landmark point, and forj 6= 1, cm denotes the result of deforming toc̃m from
iteration(j − 1) using the statistical shape model [1]. For∀e ∈ Nγ(cm), we sample a
κ-neighborhoodNκ(e) on each feature sceneFk and normalize, denoted as the vector
gk

e = {fk(d)/
∑

d fk(d) | d ∈ Nκ(e)}. Then, for eache (which is a potential location
for c̃m), theK vectorsgk

e , k ∈ {1, . . . , K} are reconstructed from the training PCA
models, where the vector of reconstructed pixel values for featurek is given as

Rk
e = ḡk

m + Φk
m · (Φk

m)
T
· (gk

e − ḡk
m). (1)



3.3 Identifying New Landmarks in 3 Models: ASM, ASM+MI, and M ANTRA

We wish to compare three different methods for finding new landmark points. The first
is the traditional ASM method, which minimizes the Mahalanobis distance. The remain-
ing 2 methods utilize the Combined Mutual Information (CMI)metric to find landmark
points. The MI between 2 vectors is a measure of how predictive they are of each other,
based on their entropies. CMI is an extension of MI, where 2 sets of vectors can be com-
pared intelligently by taking into account the redundancy between the sets [10]. For 2
sets of vectors{A1, . . . ,An} and{B1, . . . ,Bn}, where eachA andB is a vector of
the same dimensionality, the MI between them is given asI(A1 · · ·An ,B1 · · ·Bn ) =
H(A1 · · ·An)+H(B1 · · ·Bn)−H(An · · ·AnB1 · · ·Bn) whereH denotes the joint
entropy [10, 12]. To estimate this joint entropy, we utilizek-nearest-neighbor (kNN)
entropic graphs, whereH is estimated from averagekNN distance, the details of which
can be found in [13].

1. ASM: To use the Mahalanobis distance with features, we averagedthe Mahalanobis
distance for each feature, which yields themth landmark point of the ASM method as

c̃m = argmin
e∈Nγ(cm)

1

K

K
∑

k=1

[

(gk
e − ḡk

m)T · (ϕk
m)

−1
· (gk

e − ḡk
m)

]

. (2)

2. MANTRA : The MANTRA method maximizes the CMI between the reconstructions
and original vectors to find landmark points, so that themth landmark point is given as

c̃m = argmax
e∈Nγ (cm)

I( R1
e . . .RK

e , g1
e . . .gK

e ). (3)

3. ASM+MI : Finally, to evaluate the effectiveness of using the reconstructions, the
ASM+MI method [4] maximizes the CMI betweenge andḡm instead of betweenge

andRe, so that themth landmark point is defined as

c̃m = argmax
e∈Nγ (cm)

I( ḡ1
m . . . ḡK

m , g1
e . . .gK

e ). (4)

4 Results

Our data consisted of 128 1.5 Tesla (T), T2-weightedin vivo prostate MR slices, 21
3T T1-weighted DCEin vivo prostate MR slices, and 78 1.5T T1-weighted DCE MR
breast images. To evaluate our methods, a 10-fold cross validation was performed on
each of the datasets for the MANTRA, ASM+MI, and ASM methods,in which 90% of
the images were used for training, and 10% were used for testing, which was repeated
until all images had been tested.

4.1 Quantitative Results

For nearly 230 clinical images, MANTRA, ASM, and ASM+MI werecompared against
expert delineated segmentations (Expert 1) in terms of 6 error metrics [7, 15], where
PPV and MAD stand for Positive Predictive Value and Mean Absolute Distance re-
spectively. The segmentations of an experienced radiologist (Expert 1) were used as



Table 1. Quantitative results for all test performed (ASM, ASM+MI, MANTRA) as mean±
standard deviation.

Object Method Overlap Sensitivity Specificity PPV MAD Hausdorff

Prostate MANTRA .752±.118 .880±.115 .765±.131 .849±.1134.3±2.1 11.6±5.0
with ASM+MI .731±.128 .831±.130 .813±.151 .879±.1394.5±2.2 12.3±5.8

Intensities ASM .668±.165 .737±.187 .855±.149 .903±.1345.6±3.1 13.7±6.8
Prostate MANTRA .840±.096 .958±.041 .784±.098 .873±.1062.6±1.1 8.1±3.3

with ASM+MI .818±.094 .925±.055 .796±.113 .881±.1112.9±1.2 8.7±3.4
Features ASM .766±.144 .814±.163 .888±.087 .933±.0993.6±1.9 10.0±3.8
Prostate Expert 2 .858±.101 .961±.089 .778±.119 .886±.0832.4±1.7 7.7±5.1

Breast
MANTRA .925±.102 .952±.102 .935±.044 .970±.0224.9±6.7 16.3±11.6
ASM+MI .925±.098 .954±.098 .930±.042 .968±.0214.9±6.6 16.6±11.3

ASM .924±.104 .952±.104 .934±.041 .970±.0205.0±7.1 16.9±12.3

the gold standard for evaluation. Also shown in Table 1 is thesegmentation perfor-
mance of a radiologist resident (Expert 2) compared to Expert 1. Note that MANTRA
performs comparably to Expert 2, and in 78% of the 18 scenarios (6 metrics, 3 tests),
MANTRA performs better than ASM and ASM+MI. The scenarios inwhich it failed
(specificity and PPV of the prostate) did not take into account false negative area. Us-
ing the proposed ASM+MI algorithm performed better than theASM method but worse
than the MANTRA method, suggesting that MI is a more effective metric than the Ma-
halanobis distance for border detection, but also justifying the use of the reconstructions
in MANTRA. In addition, using statistical texture featuresimproved the performance
of all results, showing the effectiveness of the multi-attribute approach. For breast seg-
mentation task, all 3 methods performed equivalently, indicating that our new method
is as robust as the traditional ASM method in segmenting a variety of medical images.

4.2 Qualitative Results

In Figure 2 are shown the results of qualitatively comparingthe ground truth in the first
column (Figures 2 (a), (e), (i), and (m)), MANTRA in the second column (Figures 2
(b), (f), (j), and (n)), ASM+MI in the third column (Figures 2(c), (g), (k), and (o)),
and ASM in the fourth column (Figures 2 (d), (h), (l), and (p)). Figures 2 (a)-(h) show
the results of the models on 1.5T T2-weighted prostate slices, Figures 2 (i)-(l) show 3T
T1-weighted prostate slices results, and finally Figures 2 (m)-(p) show 1.5T DCE breast
results. In all the cases, the MANTRA segmentation is most similar to the ground truth
segmentation. The false edges that sometimes cause the models to deviate from the true
prostate edge can be seen in Figures 2 (c) and (d), and in Figures 2 (i)-(l) the lack of a
clear prostate edge at the top prevents the ASM+MI and ASM from finding the correct
object border.

5 Concluding Remarks

We have presented a Multi-Attribute, Non-Initializing, Texture Reconstruction Based
Active Shape Model (MANTRA) with the following strengths:



1. PCA-based texture models are used to better represent theborder instead of simply
using mean intensities as in the traditional ASM.

2. CMI is used as an improved border detection metric to overcome several inherent
limitations with the Mahalanobis distance. The use ofkNN entropic graphs makes
it possible to compute CMI in higher dimensions.

3. Using multiple attributes gives better results than simply using intensities.
4. A multi-resolution approach is used to overcome initialization bias, and problems

with noise at higher resolutions.

MANTRA was tested on over 230 clinical images, and outperformed the traditional
ASM method. In addition, MANTRA was successful with different field strengths (1.5T
and 3T) and on multiple protocols (DCE and T2). The incorporation of multiple texture
features also increased results significantly, indicatingthat a multi-attribute approach

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2. The ground truth is shown in (a), (e), (i), and (m), MANTRA in (b), (f), (j), and (n),
ASM+MI in (c), (g), (k), and (o), and ASM in (d), (h), (l), and (p). (a)-(h) show the results of the
models on 1.5T T2-weighted prostate slices, in (i)-(l) are shown 3T T1-weighted prostate slices
results, and finally in (m)-(p) are shown 1.5T DCE breast results.



is advantageous. Future work will attempt to discover and overcome limitations of the
choice of features, and to extend MANTRA to be 3D (our tests show that a single CMI
calculation for 2 neighborhoods of 64x64x10 pixels is on theorder of10−3 seconds,
indicating that a 3D model can work in real time).
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