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Abstract. In this paper we present MANTRA (Multi-Attribute, Non-Imatizing,
Texture Reconstruction Based Active Shape Model) whicbriparates a number
of features that improve on the the popular Active Shape M@d&M) algorithm.
MANTRA has the following advantages over the traditionalM&odel. (1) It
does not rely on image intensity information alone, as ibiporates multiple
statistical texture features for boundary detection. (8)iké traditional ASMs,
MANTRA finds the border by maximizing a higher dimensionatsien of mu-
tual information (MI) called combined MI (CMI), which is éstated fromkNN
entropic graphs. The use of CMI helps to overcome limitatioh the Maha-
lanobis distance, and allows multiple texture featuresddrielligently com-
bined. (3) MANTRA does not rely on the mean pixel intensityues to find
the border; instead, it reconstructs potential image gastcand the image patch
with the best reconstruction based on CMI is considered tiecoborder. Our
algorithm was quantitatively evaluated against expentigdaruth on almost 230
clinical images (128 1.5 Tesla (T) T2 weightadvivo prostate magnetic reso-
nance (MR) images, 78 dynamic contrast enhanced breast MBeisn and 21
3T invivo T1-weighted prostate MR images) via 6 different quantreathetrics.
Results from the more difficult prostate segmentation tasw(ich a second ex-
pert only had a 0.850 mean overlap with the first expert) sthatthe traditional
ASM method had a mean overlap of 0.668, while the MANTRA mduad a
mean overlap of 0.840.

1 Introduction

The Active Shape Model (ASM) [1] and Active Appearance MadelM) [2] are both
popular methods for segmenting known anatomical strustdnee ASM algorithm in-
volves an expert initially selecting landmarks to condtaustatistical shape model us-
ing Principal Component Analysis (PCA). A set of intensiglues is then sampled
along the normal in each training image. During segmentatoy potential pixel on
the border also has a profile of intensity values sampled.pbiir@ with the minimum
Mahalanobis distance between the mean training inteasitid the sampled intensities
presumably lies on the object border. Finally, the shapeahisdupdated to fit these
landmark points, and the process repeats until convergetoeeever, there are several
limitations with traditional ASMs with regard to image segntation. (1) ASMs require
an accurate initialization and final segmentation resu#sansitive to the user defined



initialization. (2) The border detection requires that tligtribution of intensity values
in the training data is Gaussian, which need not necesdagilthe case. (3) Limited
training data could result a near-singular covariance imyatausing the Mahalanobis
distance to not be defined.

Alternatives and extensions to the traditional ASM alduorithave been proposed
[3-5]. An interesting alternative classifier-based methad proposed in [3] where
Taylor-series gradient features are calculated and tharfssathat improve classifica-
tion accuracy during training are used during segmentaliban, the classifier is used
on the features of the test image to determine border laridpménts. The classifier ap-
proach provides an alternative to the Mahalanobis disteordending landmark points,
but requires an offline feature selection stage. The segtientalgorithm presented in
[5] gave very promising results as it implemented a multifadte based approach and
also allowed for multiple landmark points to be incorpodateowever, it still relies on
the Mahalanobis distance for its cost function which mighttlme optimal.

MANTRA differs from the traditional AAM in that AAMs employ global texture
model of the entire object, which is combined with the shagermation to create a
general appearance model. For several medical image teskeyhr, local texture near
the object boundary is more relevant to obtaining an acelsagmentation instead of
global object texture, and MANTRA'S approach is to createeal texture model for
each individual landmark point.

In this paper we present a novel segmentation algorithmtiMdiribute Non-
Initializing Texture Reconstruction Based ASM (MANTRA).ANTRA comprises of
a new border detection methodology, from which a statisbapes model can be fit-
ted. In the following page we briefly describe several nogplezts of MANTRA and
several ways it overcomes limitations associated withridigitional approach.

(a) Local Texture Model Reconstruction To overcome the limitations associated
with using the Mahalanobis distance, MANTRA performs PCAotl neighborhoods
surrounding the object borders of the training images tatera local texture model
for each landmark point. Any potential border landmark paoifhthe test image has
a neighborhood of pixels sampled, and the PCA-based loxalreemodel is used to
reconstruct the sampled neighborhood in a manner similaAtds [2]. These training
reconstructions are compared to the original pixels valaatetect the object border,
where the location with the best reconstruction is presuyrthb object border.

(b) Use of Multiple Attributes with Combined Mutual Informa tion: Since mu-
tual information (MI), a metric that quantifies the statistinterdependence of multiple
random variables, operates without assuming any fundtietetionship between the
variables [6], we employ it as a robust image similarity measo compare the re-
constructions to the original pixel values. In order to @eene the limitations of using
image intensities to represent the object border, 1st ada&fer statistical features [7,
8] are generated from each training image. These featuxesteen previously shown
to be useful in both computer aided diagnosis systems anstnagipn tasks [7—10]. To
integrate multiple image attributes, we utilize Combined(®@MI) because of its prop-
erty to incorporate non-redundant information from muétipources, and its previous
success in complementing similarity measures with infdionafrom multiple feature
calculations [10-12]. Since CMI operates in higher dimensj histogram-based es-
timation approaches would become too sparse when more ttieat@es are used.
Therefore, we implement the nearest neighbork(NN) entropic graph technique to



estimate the CMI [13]. The values are plotted in a high dinere graph, and the en-
tropy is estimated from the distances to kheearest neighbors, which is subsequently
used to estimate the Ml value.

(c) Non-requirement of Model Initialization : Similarly to several other segmen-
tation schemes, MANTRA is cast within a multi-resolutioarfrework, in which the
shape is updated in an iterative fashion and across imagtutiess [14]. At each
resolution increase, the area of the search neighborhaodales, allowing only fine
adjustments to be made in the higher resolution. This oveesathe problem of noise
near the object boundary and makes MANTRA robust to diffeirgtializations.

The experiments were performed on nearly 230 images comgpB83VR protocols
and 2 body regions. Three different 2D models were testedNVIRA, the traditional
ASM, and ASM+MI (a hybrid with aspects of both MANTRA and ASM)uantitative
evaluation was performed against expert delineated grbuttdvia 6 metrics.

2 Brief Overview of MANTRA

MANTRA comprises of a distinct training and segmentatie@pdt-igure 1).

Training

1. Sdlect Landmark Points of object border on each training image.

2. Generate Shape Model Using PCA as in traditional ASMs [1].

3. Generate Texture Features: K statistical texture feature scenes are generated for each
of the N training images, which include gradient and second ordevamurrence fea-
tures [7,8]. Then, a neighborhood surrounding each lankipaint is sampled from
each of theK feature scenes for alV training images.

4, Generate Texture Model Using PCA: Each landmark point ha& texture models
generated by performing PCA on &l neighborhood vectors for each given feature.
Segmentation

5. Overlay Mean Shape on test image to anchor the initial landmark points.

6. Generate Texture Features: The same texture features used for training (gradient and
second order co-occurrence [7, 8]) are generated from shéege.

7. Reconstruct Patches Using Texture Model: A neighborhood is searched near each
landmark point, and the search area size is inversely tetatéhe resolution, so that
only fine adjustments are made at the highest resolutiorafppotential border land-
mark point, its surrounding values are reconstructed fiwarttaining PCA models.

and pathways com-
prising MANTRA,

Training Segmentation
{ 1. Select Landmark Points ‘ ‘ 5. Overlay Mean Shape ‘
‘ 3. Generate Texture Features ‘ ‘ 6. Generate Texture Features ‘ Flg 1 The modules
| N
J

‘ 4. Generate Texture Model Using PCA ‘7. Reconstruct Patches Using Texture Mode\‘

‘ 8. Use Entropic Graphs to Maximize CMI ‘ Wlth the tralmng
! module on the left
'P{ 2. Generate Shape Model Using PCA } ‘} 9. Fit Shape Model To Goal Points and the testing

module on the right.



8. Use KNN Entropic Graphs to Maximize CMI: kNN entropic graphs [13] are used to
estimate entropy, and then CMI. The location with the higl@¥| value between its
reconstructed values and its original values is the newneaml point.

9. Fit Shape Model To New Landmark Points. Once a set of new landmarks points
have been found, the current shape is updated to best fitldredmark points [1], and
constrained to +/- 2.5 standard deviations from the meapeshikhe resolution is then
doubled at each iteration until convergence is obtained.

3 Methodology

This section is focused on Steps 4, 6-9 of the MANTRA schem&taps 1-3, 5 are
identical to corresponding steps in [1].

3.1 Generating Texture Models

We define the set ofV training images a$;,, = {C* | a € {1,...,N}}, where
C™ = (C, f~) is an image scene whetg¢ € R? represents a set of 2D spatial loca-
tions andf®(c) represents a function that returns the intensity value atan C. For
VC* € Sy, X* C Cis a set ofM landmark points manually delineated by an ex-
pert, whereX® = {2 | m € {1,..., M}}. ForvC® € S;,, K features sceneB~* =

(C, f**), k € {1,..., K} are then generated. For our implementation, we used the gra-
dient magnitude, Haralick inverse difference moment, aachhick entropy texture fea-
tures [7, 8]. For each training imagé, and each landmark poinf,, ax-neighborhood
N, () (where forVd € N, (c%), || d — ¢2, [|2< K,c%, ¢ N,.(c2)) is sampled on
each feature sceng** and normalized. For each landmark paintand each feature
k, the normalized feature values faid € N, (c2,) are denoted as the vectgf;* =
[fR(d)) 3o, f**(d) | d € Ni(c%,)]. The mean vector for each landmark poinand
each featuré is given asg®, = [+ >, f**(d) |a € {1,...,N},d € N, (c2)] and
the covariance matrix a£%;* overVa € {1...N} is denoted ag*,. Then, PCA is
performed by calculating the Eigenvectorsygf, and retaining the Eigenvectors that
account for most{ 98%) of the variation in the training data , denoted® .

3.2 Reconstructing Local Image Texture

We define a test image as the scéhg whereC,. ¢ Sy, and its corresponding’
feature scenes @&* k € {1,..., K'}. The M landmark points for the current iteration
j are denoted as the sé&f,, = {c¢,, | m € {1,...,M}}. A v-neighborhoodV,
(wherey # k) is searched near each current landmark pgjnto identify a landmark
point é,, which is in close proximity to the object border. Fpr= 1, ¢,,, denotes the
initialized landmark point, and for #£ 1, ¢,,, denotes the result of deformingég, from
iteration(j — 1) using the statistical shape model [1]. Fer € N, (c,,), we sample a
x-neighborhoodV; (e) on each feature scefe® and normalize, denoted as the vector
gk ={f*d)/ >, f*(d) | d € N,(e)}. Then, for eack (which is a potential location
for é,,), the K vectorsg® k € {1,..., K} are reconstructed from the training PCA
models, where the vector of reconstructed pixel valuesdaturek is given as

_ T _
RE =gk +®) - (®F) - (gF —gh). (1)



3.3 Identifying New Landmarks in 3 Models: ASM, ASM+MI, and M ANTRA

We wish to compare three different methods for finding newdhaark points. The first
is the traditional ASM method, which minimizes the Mahalkisalistance. The remain-
ing 2 methods utilize the Combined Mutual Information (Cigtric to find landmark
points. The MI between 2 vectors is a measure of how preditigy are of each other,
based on their entropies. CMI is an extension of Ml, whera®akvectors can be com-
pared intelligently by taking into account the redundanetwzen the sets [10]. For 2
sets of vector§A4,...,A,} and{By,...,B,}, where eaclA andB is a vector of
the same dimensionality, the Ml between themis giveh(&s; --- A,,,B1---B,, ) =
H(A,---A,)+H®B;---B,)—H(A,---A,B; ---B,,) whereH denotes the joint
entropy [10, 12]. To estimate this joint entropy, we utilizenearest-neighbork(NN)
entropic graphs, wherH is estimated from averagd\N distance, the details of which
can be found in [13].

1. ASM: To use the Mahalanobis distance with features, we averdgedahalanobis
distance for each feature, which yields th&" landmark point of the ASM method as

. o1 _ -1 _
%:Mmm—zﬂﬁ—%Vﬂ%)%é—%% 2)
EEny(Cm) k=1
2. MANTRA : The MANTRA method maximizes the CMI between the reconsions
and original vectors to find landmark points, so that:tifé landmark point is given as

ém = argmax I(RL...RE gl...gf). (3
eENw(Cm)
3. ASM+MI: Finally, to evaluate the effectiveness of using the retractions, the
ASM+MI method [4] maximizes the CMI betweeaf) andg,, instead of betweeg,
andR., so that then!” landmark point is defined as
K

ém = argmax I(gl ...gk, gl .. gf). (4)
e€N, (cm)

4 Results

Our data consisted of 128 1.5 Tesla (T), T2-weightedivo prostate MR slices, 21
3T T1-weighted DCHn vivo prostate MR slices, and 78 1.5T T1-weighted DCE MR
breast images. To evaluate our methods, a 10-fold cross$atamlin was performed on
each of the datasets for the MANTRA, ASM+MI, and ASM methadsyhich 90% of
the images were used for training, and 10% were used fontgstihich was repeated
until all images had been tested.

4.1 Quantitative Results

For nearly 230 clinical images, MANTRA, ASM, and ASM+MI| werempared against
expert delineated segmentations (Expert 1) in terms of @ enetrics [7, 15], where
PPV and MAD stand for Positive Predictive Value and Mean AlotgoDistance re-
spectively. The segmentations of an experienced radisti¢gixpert 1) were used as



Table 1. Quantitative results for all test performed (ASM, ASM+MIANTRA) as meant
standard deviation.

| Object | Method || Overlap [Sensitivity]Specificity PPV [ MAD [Hausdorff]

Prostate| MANTRA ||.752+.118 .8804.115|.765+-.131|.849+.1134.3+2.1) 11.6+5.0
with | ASM+MI ||.7314.128.831+.130|.813+£.151|.879%H-.1394.5+-2.2) 12.3+5.8
Intensities ASM ||.668+.165.737+.187|.855+.149.903+.1345.6+3.1 13.7£6.8
Prostate MANTRA ||.8404+.096 .958+.041|.7844-.098|.873£.1062.6+1.1 8.1+3.3
with | ASM+MI |.818+.094 .925+.055|.796+.113.8814+-.1112.9+-1.2| 8.7+3.4
Feature§ ASM ||.766+.144 .814+.163|.888+.087|.933£.0993.6+1.9 10.0+3.8
Prostate| Expert 2 ||.858+.101.961+.089|.778+.119|.886+.0832.4+1.7| 7.7£5.1
MANTRA||.925+.102.952+.102].935+.044(.970+.0224.94+6.7/16.3+11.6

Breast | ASM+MI |.925+.098 .9544-.098|.930+.042|.968+.0214.94+-6.6/16.6+11.3
ASM  ||.924+.104.952+.104{.934+.041{.970+.0205.0+7.1/16.9+-12.3

the gold standard for evaluation. Also shown in Table 1 isdbgmentation perfor-
mance of a radiologist resident (Expert 2) compared to BExpevote that MANTRA
performs comparably to Expert 2, and in 78% of the 18 sceadfianetrics, 3 tests),
MANTRA performs better than ASM and ASM+MI. The scenarioshich it failed
(specificity and PPV of the prostate) did not take into actdaise negative area. Us-
ing the proposed ASM+MI algorithm performed better thanAB# method but worse
than the MANTRA method, suggesting that Ml is a more effectivetric than the Ma-
halanobis distance for border detection, but also justifyhe use of the reconstructions
in MANTRA. In addition, using statistical texture featuriesproved the performance
of all results, showing the effectiveness of the multiihttte approach. For breast seg-
mentation task, all 3 methods performed equivalently,datiing that our new method
is as robust as the traditional ASM method in segmenting ietyaof medical images.

4.2 Qualitative Results

In Figure 2 are shown the results of qualitatively compativegground truth in the first
column (Figures 2 (a), (e), (i), and (m)), MANTRA in the sedorolumn (Figures 2
(b), (®, (j), and (n)), ASM+MI in the third column (Figures &), (g), (k), and (0)),
and ASM in the fourth column (Figures 2 (d), (h), (1), and (#igures 2 (a)-(h) show
the results of the models on 1.5T T2-weighted prostatessli€igures 2 (i)-(I) show 3T
T1-weighted prostate slices results, and finally Figurea2(p) show 1.5T DCE breast
results. In all the cases, the MANTRA segmentation is masilar to the ground truth
segmentation. The false edges that sometimes cause thésrtmdeviate from the true
prostate edge can be seen in Figures 2 (c) and (d), and ingsi@u{i)-(l) the lack of a
clear prostate edge at the top prevents the ASM+MI and ASkh finding the correct
object border.

5 Concluding Remarks

We have presented a Multi-Attribute, Non-Initializing,xtere Reconstruction Based
Active Shape Model (MANTRA) with the following strengths:



1. PCA-based texture models are used to better represdmittier instead of simply
using mean intensities as in the traditional ASM.

2. CMl is used as an improved border detection metric to @raecseveral inherent
limitations with the Mahalanobis distance. The us&lNN entropic graphs makes
it possible to compute CMI in higher dimensions.

3. Using multiple attributes gives better results than $jmiging intensities.

4. A multi-resolution approach is used to overcome initizion bias, and problems
with noise at higher resolutions.

MANTRA was tested on over 230 clinical images, and outpentxl the traditional
ASM method. In addition, MANTRA was successful with diffatdield strengths (1.5T
and 3T) and on multiple protocols (DCE and T2). The incorfioreof multiple texture
features also increased results significantly, indicatireg a multi-attribute approach

Fig. 2. The ground truth is shown in (a), (e), (i), and (m), MANTRA ib)( (f), (j), and (n),
ASM+MI in (c), (9), (k), and (0), and ASM in (d), (h), (1), ang). (a)-(h) show the results of the
models on 1.5T T2-weighted prostate slices, in (i)-(I) dreven 3T T1-weighted prostate slices
results, and finally in (m)-(p) are shown 1.5T DCE breastltssu



is advantageous. Future work will attempt to discover aref@ame limitations of the
choice of features, and to extend MANTRA to be 3D (our testsstihat a single CMI
calculation for 2 neighborhoods of 64x64x10 pixels is on deer of 10~2 seconds,
indicating that a 3D model can work in real time).
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